热带假丝酵母脂肪醛脱氢酶基因CtAld1CtAld2的功能评价
作者:
基金项目:

江苏省自然科学基金(BK20171138);国家“863计划”(2013AA102101-5)


Functional identification of fatty aldehyde dehydrogenase genes CtAld1 and CtAld2 from Candida tropicalis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]热带假丝酵母是发酵法生产二元酸的重要工业菌株,具有较高的ω-氧化活性。脂肪醛脱氢酶在ω-氧化途径中起重要作用,催化脂肪醛生成脂肪酸,但其具体催化功能及对细胞生理影响还未被系统研究。本文通过删除脂肪醛脱氢酶基因CtAld1CtAld2鉴定了其在ω-氧化途径中的功能。[方法]通过基因组信息挖掘获得热带假丝酵母脂肪醛脱氢酶基因CtAld1CtAld2序列,在此基础上,通过同源重组敲除CtAld1CtAld2基因。考察突变株的生长和胞内脂肪醛脱氢酶活性变化,并评价CtAld1CtAld2基因敲除对细胞二元酸合成能力的影响。[结果]分别获得了热带假丝酵母突变株XZX-1(ΔCtAld1/ΔCtAld1XZX-2(ΔCtAld2/ΔCtAld2)和XZX-12(ΔCtAld1/ΔCtAld1ΔCtAld2/ΔCtAld2)。在以十二烷为唯一碳源的培养基中,敲除CtAld2基因显著抑制细胞的生长,胞内脂肪醛脱氢酶活性降低为出发菌株的30%;敲除CtAld1基因尽管会使细胞损失一部分醛脱氢酶活性,但能够一定程度地提升细胞在十二烷中的生长性能。敲除CtAld1CtAld2会降低菌株二元酸产量,组合敲除CtAld1CtAld2严重削弱菌株十二碳二元酸的合成能力。[结论]CtAld2对热带假丝酵母细胞的生长和十二碳二元酸的合成具有重要作用,缺失CtAld1CtAld2基因降低细胞的二元酸合成能力。CtAld1CtAld2可作为热带假丝酵母ω-氧化途径代谢工程改造的潜在靶点。

    Abstract:

    [Objective] Candida tropicalis has become an important industrial strain to produce dicarboxylic acids due to its high ω-oxidation activity. Fatty aldehyde dehydrogenases (FALDHs) play important roles in the ω-oxidation pathway, converting fatty aldehydes to fatty acids. However, FALDHs characterization and their roles in the synthesis of dibasic acids have not been studied in depth. Therefore, we cloned two genes CtAld1 and CtAld2 encoding FALDHs and evaluated their function in cell phenotype, enzyme activity and dicarboxylic acids accumulation. [Methods] We screened two genes of CtAld1 and CtAld2 through genome mining and sequence alignment. Based on sequence analysis, we deleted CtAld1 and CtAld2 either separately or accumulatively by homologous recombination method, and generated various mutants. The effect of deletion of CtAld1 and CtAld2 on cell growth, FALDH activity and dodecanedioic acid (DCA12) production were evaluated and compared. [Results] XZX-1 (ΔCtAld1/ΔCtAld1), XZX-2 (ΔCtAld2/ΔCtAld2) and XZX-12 (ΔCtAld1/ΔCtAld1, ΔCtAld2/ΔCtAld2) were obtained. When using dodecane as sole carbon source, deletion of CtAld2 gene significantly inhibited cell growth, and the intracellular FALDH activity was only 30% of the parental strain. Deleting CtAld1 had a slight promotion of cell growth, however intracellular FALDH activity was decreased to some extent. Furthermore, simultaneous deletion of CtAld1 and CtAld2 significantly impaired the cell growth performance and decreased FALDH activity, thus causing a distinct lower DCA12 yield compared to the wild type strain. [Conclusion] The deletion of CtAld1 in C. tropicalis could reduce the yield of DCA12. And CtAld2 plays an important role in the growth on dodecane and production of DCA12. To our knowledge, they could be recruited as target genes for metabolic engineering of ω-oxidation pathway in C. tropicalis.

    参考文献
    [1] Liu SC, Jiao P, Cao ZA. Metabolism and β-oxidation of alkane-utilizing Candida tropicalis. Acta Microbiologica Sinica, 2002, 42(1):125-128. (in Chinese)刘树臣, 焦鹏, 曹竹安. 热带假丝酵母代谢烷烃过程中的β-氧化和代谢调控. 微生物学报, 2002, 42(1):125-128.
    [2] Yamada T, Nawa H, Kawamoto S, Tanaka A, Fukui S. Subcellular localization of long-chain alcohol dehydrogenase and aldehyde dehydrogenase in n-alkane-grown Candida tropicalis. Archives of Microbiology, 1980, 128(2):145-151.
    [3] Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Nature Biotechnology, 1992, 10(8):894-898.
    [4] Craft DL, Madduri KM, Eshoo M, Wilson CR. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to α, ω-dicarboxylic acids. Applied and Environmental Microbiology, 2003, 69(10):5983-5991.
    [5] Eirich LD, Craft DL, Steinberg L, Asif A, Eschenfeldt WH, Stols L, Donnelly MI, Wilson CR. Cloning and characterization of three fatty alcohol oxidase genes from Candida tropicalis strain ATCC 20336. Applied and Environmental Microbiology, 2004, 70(8):4872-4879.
    [6] Ueda M, Tanaka A. Long-chain alcohol dehydrogenase of Candida yeast. Methods in Enzymology, 1990, 188:171-175.
    [7] Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica. Journal of Biological Chemistry, 2014, 289(48):33275-33286.
    [8] Xiang Z, Chen XZ, Zhang LH, Shen W, Fan Y, Lu ML. Development of a genetic transformation system for Candida tropicalis based on a reusable selection marker of URA3 gene. Hereditas, 2014, 36(10):1053-1061. (in Chinese)项峥, 陈献忠, 张利华, 沈微, 樊游, 陆茂林. 利用可重复使用的URA3标记基因建立热带假丝酵母基因敲除系统. 遗传, 2014, 36(10):1053-1061.
    [9] Zhang LH, Chen XZ, Chen Z, Wang ZZ, Jiang S, Li L, Pötter M, Shen W, Fan Y. Development of an efficient genetic manipulation strategy for sequential gene disruption and expression of different heterologous GFP genes in Candida tropicalis. Applied Microbiology and Biotechnology, 2016, 100(22):9567-9580.
    [10] Wilson RB, Davis D, Enloe BM, Mitchell AP. A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast, 2000, 16(1):65-70.
    [11] Zhang LH. Development of the genetic manipulation system for Candida tropicalis and its application in dicarboxylic acid production. Master Dissertation of Jiangnan University, 2016. (in Chinese)张利华. 热带假丝酵母遗传操作系统的建立及在二元酸合成中的应用. 江南大学硕士学位论文, 2016.
    [12] Liu SC, Li C, Fang XC, Cao ZA. Optimal pH control strategy for high-level production of long-chain α, ω-dicarboxylic acid by Candida tropicalis. Enzyme and Microbial Technology, 2004, 34(1):73-77.
    [13] Cao ZA, Gao H, Liu M, Jiao P. Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid. Biotechnology Journal, 2006, 1(1):68-74.
    [14] Laplaza J, Beardslee T, Eirich D, Picataggio S. Biological methods for preparing a fatty dicarboxylic acid. The United States:WO2014100461A2. 26 June 2014.
    [15] Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. European Journal of Biochemistry, 1996, 241(3):779-786.
    [16] Tanaka A, Osumi M, Fukui S. Peroxisomes of alkane-grown yeast fundamental and practical aspects. Annals of the New York Academy of Sciences, 1982, 386:183-199.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王泽政,张利华,张满琪,胡世元,李莉,沈微,樊游,陈献忠. 热带假丝酵母脂肪醛脱氢酶基因CtAld1CtAld2的功能评价[J]. 微生物学报, 2018, 58(8): 1492-1502

复制
相关视频

分享
文章指标
  • 点击次数:922
  • 下载次数: 2017
  • HTML阅读次数: 1707
  • 引用次数: 0
历史
  • 收稿日期:2017-11-18
  • 最后修改日期:2018-01-10
  • 在线发布日期: 2018-07-31
文章二维码