贝莱斯芽孢杆菌L-1对梨灰霉和青霉病菌的抑制作用评价及全基因组分析
作者:
基金项目:

国家重点研发计划(2016YFD0400903-06);国家现代农业产业技术体系(CARS-29-19)


Complete genome analysis of Bacillus velezensis L-1 and its inhibitory effect on pear gray and blue mold
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]明确贝莱斯芽孢杆菌(Bacillus velezensis)L-1对梨灰霉和青霉病菌的抑制作用,明确菌株L-1无菌发酵液拮抗活性的稳定性及可能的拮抗机制。[方法]通过离体测定、活体测定和病原菌菌丝形态观察,评价菌株L-1对梨灰霉和青霉病菌的拮抗活性。以梨灰霉病菌为供试病原菌,利用牛津杯法测定菌株L-1无菌发酵液拮抗活性的稳定性。利用Pacbio RSⅡ三代测序技术测定L-1的全基因序列,将全基因序列与基因蛋白质序列数据库进行BLAST比对分析,预测菌株L-1可能产生的次生代谢产物及潜在的作用机制。[结果]菌株L-1对梨灰霉和青霉病菌的活体抑制率分别为92.88%和77.47%,能引起病原菌菌丝膨大、畸形。菌株L-1在含10% NaCl的培养液中仍能正常生长,其无菌发酵液耐高温、酸、碱、紫外照射和蛋白酶降解,对病原菌具有稳定的拮抗活性。全基因序列分析结果显示菌株L-1有112个基因参与了多种碳源的代谢,可以利用多种碳源进行生长;含有参与亚精胺、海藻糖等与菌株抗逆性相关化合物合成的基因;次生代谢产物预测结果显示:L-1含有合成surfactin、fengycin、bacillibactin、bacillaene、macolactin、difficidin、bacilysin等多种肽聚糖和聚酮糖类抗性化合物的基因簇,以及能够降解病原菌细胞壁的β-1,3-葡聚糖酶和几丁质酶相关的基因;此外菌株L-1含有生成乙偶姻等能够诱导植物抗性的基因。[结论]菌株L-1能有效拮抗多种梨果采后病害,抗逆性强,拮抗活性稳定,预测菌株L-1能够通过产生多种拮抗活性化合物和细胞壁水解酶类以及诱导植物抗性实现防病效果,具有很大的应用潜力。

    Abstract:

    [Objective] This work aimed to uncover the inhibitory effects of Bacillus velezensis L-1 on pear gray and blue mold, the inhibitory stability of its cell-free supernatant, and understand the molecular mechanism underlying the biocontrol processes.[Methods] We analyzed the inhibitory effects of strain L-1 on pear gray and blue mold both in vitro and in vivo, and observed the influences of strain L-1 on the mycelium growth of pathogens by microscopes. We determined the inhibitory stability of strain L-1 on Botrytis cinerea by oxford cup method and performed the complete genome sequencing of strain L-1 by Pacbio RSⅡ platform. We also annotated the obtained sequences through different protein databases to predict the mechanisms involved in the biocontrol processes.[Results] The control efficacy of strain L-1 against pear gray and blue mold was 92.88% and 77.47% respectively, and strain L-1 caused the swallow and abnormal growth of the pathogens' mycelium. Strain L-1 could grow normally in the broth containing 10% (W/V) NaCl, and its cell-free supernatant showed stable inhibitory effects against pear gray mold under acid, alkali, UV light, heat and protease treatments. Complete genome sequence analysis showed that there were 112 genes involved in the metabolism of different carbons, indicating its ability to grow on different carbon sources. Strain L-1 contained genes encoding the alimine and trehalose, that are related to stress resistance. Strain L-1 contained gene clusters related to the biosynthesis of a variety of polypeptide and polyketide compounds, such as surfactin, fengycin, bacillibactin, bacillaene, macolactin, difficidin, and bacilysin, and the genes encoding enzymes like β-1,3-glucase and chitinase, that could hydrolyze the pathogen cell wall. In addition, strain L-1 contained genes related to the biosynthesis of actoin, which could induce host resistance.[Conclusion] B. velezensis L-1 has the potential as an effective biocontrol agent.

    参考文献
    [1] Sun PP, Wang WH. 2016/2017 World production, market and trade of apple, pear, grape, peach and cherry. China Fruits, 2017, (2):91-100. (in Chinese)孙平平, 王文辉. 2016/2017年世界苹果、梨、葡萄、桃及樱桃产量、市场及贸易情况. 中国果树, 2017, (2):91-100.
    [2] Spotts RA, Chen PM. Prestorage heat treatment for control of decay of pear fruit. Phytopathology, 1987, 77(11):1578-1582.
    [3] Ma GM. The control effect of five fungicides against pear ring rot in field. China Fruits, 2007, (4):64. (in Chinese)马广民. 5种杀菌剂对梨轮纹病的田间防效试验. 中国果树, 2007, (4):64.
    [4] Sun PP, Cui JC, Jia XH, Wang WH. Isolation and Characterization of Bacillus amyloliquefaciens L-1 for Biocontrol of Pear Ring Rot. Horticultural Plant Journal, 2017, 3(5):183-189.
    [5] Dunlap CA, Kim SJ, Kwon SW, Rooney AP. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(7):2104-2109.
    [6] Dunlap CA, Kim SJ, Kwon SW, Rooney AP. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens, Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3):1212-1217.
    [7] Cao CX, Han W, Zhang HP. Application of third generation sequencing technology to microbial research. Microbiology China, 2016, 43(10):2269-2276. (in Chinese)曹晨霞, 韩琬, 张和平. 第三代测序技术在微生物研究中的应用. 微生物学通报, 2016, 43(10):2269-2276.
    [8] Khamna S, Yokota A, Lumyong S. Actinomycetes isolated from medicinal plant rhizosphere soils:diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 2009, 25(4):649-655.
    [9] Wiggins BE, Kinkel LL. Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous Streptomycetes. Phytopathology, 2005, 95(2):178-185.
    [10] Sadeghian M, Bonjar GHS, Sirchi GRS. Post harvest biological control of apple bitter rot by soil-borne Actinomycetes and molecular identification of the active antagonist. Postharvest Biology and Technology, 2016, 112:46-54.
    [11] Ge PH, Ma GZ, FU HR, Wang SF, Liu ZP. The inhibitory spectrum and stability determination of marine Bacillus amyloliquefaciens GM-1 strain. Agrochemicals, 2012, 51(10):730-732, 741. (in Chinese)葛平华, 马桂珍, 付泓润, 王淑芳, 刘兆普. 海洋解淀粉芽孢杆菌gm-1菌株发酵液抗菌谱及稳定性测定. 农药, 2012, 51(10):730-732, 741.
    [12] Kilani-Feki O, Khedher SB, Dammak M, Kamoun A, Jabnoun-Khiareddine H. Daami-Remadi M, Tounsi S. Improvement of antifungal metabolites production by Bacillus subtilis v26 for biocontrol of tomato postharvest disease. Biological Control, 2016, 95:73-82.
    [13] Sun PP, Cui JC, Jia XH, Wang WH. Complete genome sequence of Bacillus velezensis L-1, which has antagonistic activity against pear diseases. Genome Announcements, 2017, 5(48):e01271-17.
    [14] Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 2015, 43(W1):W237-W243.
    [15] Wilson CL, Wisniewski ME. Biological control of postharvest diseases of fruits and vegetables:an emerging technology. Annual Review of Phytopathology, 1989, 27(1):425-441.
    [16] Alcázar R, Bitrián M, Bartels D, Koncz C, Altabella T, Tiburcio AF. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signaling & Behavior, 2011, 6(2):243-250.
    [17] Duan J, Jiang W, Cheng ZY, Heikkila JJ, Glick BR. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS ONE, 2013, 8(3):e58640.
    [18] Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Schuhmacher R, Sessitsch A, Brader G. Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environmental Microbiology, 2016, 18(8):2634-2645.
    [19] Wu LM, Wu HJ, Chen LN, Yu XF, Borriss R, Gao XW. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific Reports, 2015, 5:12975.
    [20] Ippolito A, El Ghaouth A, Wilson CL, Wisniewski M. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 2000, 19(3):265-272.
    [21] Castoria R, de Curtis F, Lima G, de Cicco V. β-1,3-glucanase activity of two saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases. Postharvest Biology and Technology, 1997, 12(3):293-300.
    [22] Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW. Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8):4927-4932.
    [23] Pang XQ, Zhang ZQ, Dong C. Biocontrol of postharvest disease of fruits and vegetables by antagonism. Acta Horticulturae Sinica, 2000, 27(S1):546-552. (in Chinese)庞学群, 张昭其, 董春. 拮抗菌控制果蔬采后病害研究进展. 园艺学报, 2000, 27(S1):546-552.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙平平,崔建潮,贾晓辉,王文辉. 贝莱斯芽孢杆菌L-1对梨灰霉和青霉病菌的抑制作用评价及全基因组分析[J]. 微生物学报, 2018, 58(9): 1637-1646

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-12-13
  • 最后修改日期:2018-03-25
  • 在线发布日期: 2018-08-27
文章二维码