酵母RNA聚合酶II羧基端结构域激酶CTDK-I及其亚基的结构与功能
作者:
基金项目:

国家自然科学基金(31400683);宁波大学人才引进启动基金(013-E00843134702,013-E00843144702,013-421504460);宁波大学王宽诚基金;宁波大学添路职业发展基金学生培育项目


Structure and function of yeast RNA polymerase II carboxyl-terminal repeat domain kinase CTDK-I and its subunits
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    RNA聚合酶Ⅱ最大亚基Rpb1的羧基端结构域(carboxyl-terminal repeat domain,CTD)是RNA聚合酶Ⅱ发挥转录延伸功能所必需的,对其执行精确的转录调节功能至关重要。酵母细胞周期蛋白依赖性激酶CTDK-I(carboxyl-terminal repeat domain kinase,CTDK-I)由CTK1、CTK2和CTK3组成,作用于RNA聚合酶Ⅱ羧基端结构域,动态磷酸化CTD的七肽重复序列(YSPTSPS)来调控转录和翻译。酵母中的特异性蛋白CTK3与特殊的细胞周期蛋白CTK2结合形成异二聚体,再与CTDK-I的催化亚基CTK1结合以调节其活性。CTK1作为细胞周期蛋白CDK(cyclin dependent kinase,CDK)的同源蛋白,其结构与功能的研究可拓展人们对CDK蛋白家族的认识;CTK2-CTK3复合物对CTK1调控机制的研究也可为细胞周期蛋白抑制剂的研发提供新的思路。本文简述了酵母CTDK-I的功能特点及其亚基的结构与功能以及亚基间的相互作用,并展望了CTDK-I复合物的研究前景。

    Abstract:

    Carboxyl-terminal repeat domain (CTD) of RNA polymerase Ⅱ largest subunit Rpb1 is essential for transcription regulation. Carboxyl-terminal repeat domain kinase (CTDK-I) is composed of CTK1, CTK2 and CTK3, acting on RNA polymerase Ⅱ carboxyl-terminal repeat domain and phosphorylating CTD heptapeptide repeat (YSPTSPS) for regulating transcription and translation. The specific protein CTK3 binds to cyclin CTK2 to form a heterodimer, controlling CTK1 activity by binding to CTK1. Structural and functional study of CTK1, a homologous protein of cyclin dependent kinase (CDK), may provide a new idea for the research of CDK family, and analysis of the regulatory mechanism of activation of CTK1 by CTK2-CTK3 complex may offer an innovative method for developing cell cycle protein inhibitors. This article reviews the functional characteristics of CTDK-I and the structures and interactions of its subunits and provides a useful guide for the studies of CTDK-I complex in the future.

    参考文献
    [1] Maniatis T, Reed R. An extensive network of coupling among gene expression machines. Nature, 2002, 416(6880):499-506.
    [2] Liu PD, Greenleaf AL, Stiller JW. The essential sequence elements required for RNAP Ⅱ carboxyl-terminal domain function in yeast and their evolutionary conservation. Molecular Biology and Evolution, 2008, 25(4):719-727.
    [3] Proudfoot NJ, Furger A, Dye JM. Integrating mRNA processing with transcription. Cell, 2002, 108(4):501-512.
    [4] Bouchoux C, Hautbergue G, Grenetier S, Carles C, Riva M, Goguel V. CTD kinase I is involved in RNA polymerase I transcription. Nucleic Acids Research, 2004, 32(19):5851-5860.
    [5] Porrua O, Libri D. Transcription termination and the control of the transcriptome:why, where and how to stop. Nature Reviews Molecular Cell Biology, 2015, 16(3):190-202.
    [6] Jasnovidova O, Klumpler T, Kubicek K, Kalynych S, Plevka P, Stefl R. Structure and dynamics of the RNAPⅡ CTDsome with Rtt103. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42):11133-11138.
    [7] Mühlbacher W, Mayer A, Sun M, Remmert M, Cheung ACM, Niesser J, Soeding J, Cramer P. Structure of Ctk3, a subunit of the RNA polymerase Ⅱ CTD kinase complex, reveals a noncanonical CTD-interacting domain fold. Proteins, 2015, 83(10):1849-1858.
    [8] Rodriguez CR, Cho EJ, Keogh MC, Moore CL, Greenleaf AL, Buratowski S. Kin28, the TFⅡH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase Ⅱ. Molecular and Cellular Biology, 2000, 20(1):104-112.
    [9] Bharati AP, Singh N, Kumar V, Kashif M, Singh AK, Singh P, Singh SK, Siddiqi MI, Tripathi T, Akhtar MS. The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase Ⅱ. Scientific Reports, 2016, 6:31294.
    [10] Qiu HF, Hu CH, Hinnebusch AG. Phosphorylation of the pol Ⅱ CTD by KIN28 enhances BUR1/BUR2 recruitment and ser2 CTD phosphorylation near promoters. Molecular Cell, 2009, 33(6):752-762.
    [11] Hallberg M, Polozkov GV, Hu GZ, Beve J, Gustafsson CM, Ronne H, Björklund S. Site-specific srb10-dependent phosphorylation of the yeast Mediator subunit Med2 regulates gene expression from the 2-μm plasmid. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(10):3370-3375.
    [12] Nelson C, Goto S, Lund K, Hung W, Sadowski I. Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature, 2003, 421(6919):187-190.
    [13] Rosonina E, Duncan SM, Manley JL. Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast. Genes & Development, 2012, 26(4):350-355.
    [14] Ohkuni K, Yamashita I. A transcriptional autoregulatory loop for KIN28-CCL1 and SRB10-SRB11, each encoding RNA polymerase Ⅱ CTD kinase-cyclin pair, stimulates the meiotic development of S. cerevisiae. Yeast, 2000, 16(9):829-846.
    [15] Kuchin S, Carlson M. Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1. Molecular and Cellular Biology, 1998, 18(3):1163-1171.
    [16] Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, Young RA. Temporal regulation of RNA polymerase Ⅱ by Srb10 and Kin28 cyclin-dependent kinases. Molecular Cell, 1998, 2(1):43-53.
    [17] Dronamraju R, Strahl BD. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol Ⅱ CTD phosphorylation and transcription elongation. Nucleic Acids Research, 2014, 42(2):870-881.
    [18] Lee JM, Greenleaf AL. A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase Ⅱ. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(10):3624-3628.
    [19] Sterner DE, Lee JM, Hardin SE, Greenleaf AL. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex. Molecular and Cellular Biology, 1995, 15(10):5716-5724.
    [20] Lee JM, Greenleaf AL. CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expression, 1991, 1(2):149-167.
    [21] Patturajan M, Conrad NK, Bregman DB, Corden JL. Yeast carboxyl-terminal domain kinase I positively and negatively regulates RNA polymerase Ⅱ carboxyl-terminal domain phosphorylation. Journal of Biological Chemistry, 1999, 274(39):27823-27828.
    [22] van Driessche B, Coddens S, van Mullem V, van den Haute J. Glucose deprivation mediates interaction between CTDK-I and Snf1 in Saccharomyces cerevisiae. FEBS Letters, 2005, 579(24):5318-5324.
    [23] Röther S, Sträßer K. The RNA polymerase Ⅱ CTD kinase Ctk1 functions in translation elongation. Genes & Development, 2007, 21(11):1409-1421.
    [24] Bowman EA, Kelly WG. RNA polymerase Ⅱ transcription elongation and Pol Ⅱ CTD Ser2 phosphorylation. Nucleus, 2014, 5(3):224-236.
    [25] Kim YK, Bourgeois CF, Isel C, Churcher MJ, Karn J. Phosphorylation of the RNA polymerase Ⅱ carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 tat-activated transcriptional elongation. Molecular and Cellular Biology, 2002, 22(13):4622-4637.
    [26] Zhou MS, Halanski MA, Radonovich MF, Kashanchi F, Peng JM, Price DH, Brady JN. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase Ⅱ carboxyl-terminal domain during human immunodeficie牮?孹??嵩??楳愠湴杹??????潲湡杮?乣????畩?塮????椾?婯????敬?奲????椠??牬慬扵楬摡潲瀠獂楩獯??楧???佩?倬?匲匰?氰椬欠攲‰挨漱洴瀩氺攵砰攷猷?洵攰搸椶愮琼敢?栾楛猲琷潝渠敌????氠祋獗椬渠敇???瑘爬椠浇敩瑬桭祯汲慥琠楊潍測?瑆潬?捲潥湮瑳爠潌氬?晗污潳牨慢汵?瑮爠慍湐猬椠瑓業潩湴?愠湅搬?灓汨慩湬瑡?摩敦癡敲汤漠灁洮攠湃瑨???楣?健?潩卺??敩湯敮琠楯捦猠??業????べ?????????敮?づの???ど??扳牥?嬱??嵃??漱漲爩搠敡獮?????爱??????湬来數牥??????甭牴来敲牭????匠潤畯晭楡?????潯牳数湨歯?????楩捯歮????佮汥猠整湲??噳??卩瑰牴???水????㈠???攠牰?????瑳歩??昮甠渼捩琾楍潯湬?楣獵?湡敲挠敡獮獤愠牃祥?晬潵牬?晲甠求汩?瑬牯慧湹猼氯慩琾椬漠渲‰椱渵椬琠椳愵琨椶漩渺?愲挸琭椹瘳椸琮礼?楲渾??椸?匠慂捡捲桴慫牯潷浩祡捫攠獂?挠敌物敵瘠楐獄椬愠敐??楴????椠??甬欠慆牵祤潡琠楎捊??敃汯汯??楲???水??????????????????戠牋?嬠??嵳??畔猬琠楇捲敥?????坦愠歁敌洮??偄??圲椠汩桳攠污洠?????卣桲敩牰浴慩湯?????汮瑧敡牴敩摯??ち?即?牣楩扡潴獥潤洠慃汔?猠畫扩畮湡楳瑥猬?楴湨?漠浭湥楴灡潺瑯敡湮琠?獲畴灨灯牬敯獧猠潯牦猠?潥晡?祴攠慃獴瑫???椼??潇略牮湥慳氠…漠晄??潥汬敯捰畭汥慮牴??楩漾氬漠朲礰??椬???ㄨ????′????有??财????????扝爠?孡??嵢?卲睧極敥爠捇稬?則???桥敬渠杖??????楶浡?????敯摦映潴牨摥??呹??剩楮戭潤獥潰浥慮汤?灮牴漠瑫敩楮湡?牥瀠千??楋猭?栠祲灥潱浵敩瑲桥祳氠慴瑨敥搠?楥湴?偲副?呩??摲敩智楡捴楩敯湮琠?浦椠捴敷???楮??潡畢牬湥愠汳?潢晵??楴潳氮漠朼楩挾慊汯??桮敡浬椠獯瑦爠祂??楬????ちぬ????????????????????水???戶爨?嬱??崸‰?漵爭愸氰攱猳???? ̄剛椳挰桝愠牏摳?偡??剮潫浯洠敄氬?????慭瑯瑮愠桍??????潤瑩敮慧?????側愠瑃楔摄態爭?倠???塲楥慱潵?????敦獯歲漠癄????坡畭?卧奥???楤瑵瑣敥汤洠慴湲?坮乳???桰楴慩湯杮???? ̄?慵湫污敲祹??????潥潬瑬格洯慩渾????‰?甬戠???攩爺愲??琭栲攸″栮甼浢慲渾??椱?删瑊瑯?ち???椠??桴潴浳潣汨潩来??灮氠慂礦猣′搱甶愻氬?晓當湥捪瑳楴潲湵慰氠?牑漬氠敇獩?楥湡?瑩爠慏渮猠捉牮楶灯瑬楶潥湭?瑮整爠浯楦渠慹瑥楡潳湴?慣湡摲??乸??牴敥灲慭楩牮???楤?乭畡捩汮攠楫捩??捳楥搠獉?刨敃獔敄態爭捉栩??楮????の????????????????ぴど???戼物?孩?ㄠ嵶?剶潯朼支物猾?匠??圾敇汥汮獥?刯? ̄刬攠挲栰猰琱攬椠渲收爷?????洱椭渳漶?愼换楲搾?猳攲煝甠敌湥挠教猬?捚潨浯浵漠湌?琬漠?物愠灃椮搠汆祵?摣整杩牯慮搠敯摦?灃牴潫琱攠楩湮猠?瑵桴敯?偨?卧呹?桰祲灯潣瑥桳敳献椠猼? ̄?楨?卮捥楳敥渠捊敯??楮????????????????????????????戬爠?嬶?祝崩?券攷挷栭猸琸攳椮渠攨物????剩潮来敳牥猩?卐埁??偨?叜听?猓敪焮甠敃湴捫攱珋?愨滪摬?爋攭构畜氨愮琠椭濽滆?戟祩?灦犥漬琠攲漰氱礴猬椠猳???椩?吸爷攷渭搸猸″椮渼??椾潛挳栳敝洠楎捧愠汈?匬挠楒敯湢捥敲獴??椬?????????水ㄠ????????金????执牥?孥??嵲??捲灵桩整牭獥潮湴?????略摴渱攠票????佮灥琠業浥楴穨慹瑬楡潳湥?潢晹?捥牬祯獮瑧慡汴汩楮穧愠瑰楯潬渠?挠潰湲摯楶瑩楤潥湳猠?映潬牯?扡楬潩決潥杤椠捭慡汲?洠慡据牤漠浭潥汭敯捲畹氠敯獦???楣??捴琠慴??牮祳獣瑲慩汰汴潩杯牮慡灬栠楡捣慴?卶敩捴瑹椮漠渼????楬???楬?卲琠牃略捬瑬甼爯慩氾??椲漰氰漳本礠??漨洳洩町渷椰挹愭琷椱漹渮猼??椾??????????ぁ?倠瑓?????ㄠ??????????扥牲?孊??嵌??栠慊祓攬渠?乴???卯慮爠楊摄愬欠楄獺????倠牔漬琠敓楷湡?捳牯祮猠瑓態氬氠楆穬慯瑲楥潮湳?晌爬漠浗?灳畨牢極晲楮攠摍?瀬爠潗瑹敲楩湣?琠潊?搠楂晨晡牵慭捩瑫椠潓湒?焠畓慨汩楬瑡祴?捦牡祲獤琠慁氮???楫?乣慯瑭異牬敥??敭瑥桤潩摡獴??椠????ぬち?????????????????扥牴?孹??嵴??慮椠?塹????敐牁湓慓渮搠攼穩 ̄?卯???捵?畡汲氠慡湮????卬捬桵敬牡敲猠?卩?坬??剹椼戯潩猾漬洠攲‰猰琷爬甠挲琷用爲攩猺?琰漹?渷攲愰爮?慢瑲漾浛椳挵?爠敐獩潵汮畴瑩椠潁測?晓牨潩浬?瑴桩楦牡瑲祤?瑁栮漠畅獰慩湧摥?捥牴祩潣????灡慮牣瑥椠捯汦攠獧???椠?數?楲晥敳??楯???????????敭ぢ??????扏牍?孁??崠??業汩慬穩穥潳???? ̄?档敩湥杮??????漬攠氲氰攱父???‵?礨甶洲欹椰猩?????愷挸漰瘮攼瑢琀礀????倀漀氀甀欀愀猀?????氀氀椀猀洀愀渀?????堀甀漀渀最?一????愀爀爀愀最栀攀爀????倀漀琀琀攀爀??匀???渀椀琀椀愀氀?攀瘀愀氀甀愀琀椀漀渀?漀昀?愀?搀椀爀攀挀琀?搀攀琀攀挀琀椀漀渀?搀攀瘀椀挀攀?搀攀琀攀挀琀漀爀?昀漀爀?猀椀渀最氀攀?瀀愀爀琀椀挀氀攀?挀爀礀漀?攀氀攀挀琀爀漀渀?洀椀挀爀漀猀挀漀瀀礀???椀??漀甀爀渀愀氀?漀昀?匀琀爀甀挀琀甀爀愀氀??椀漀氀漀最礀??椀???? ???????????? ??? ???戀爀?嬀??崀?匀挀栀攀爀攀猀?匀?圀????戀愀礀攀猀椀愀渀?瘀椀攀眀?漀渀??爀礀漀????猀琀爀甀挀琀甀爀攀?搀攀琀攀爀洀椀渀愀琀椀漀渀???椀??漀甀爀渀愀氀?漀昀??漀氀攀挀甀氀愀爀??椀漀氀漀最礀??椀???? ???????????? ??????
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱文俊,毛雪玲,邱晓挺. 酵母RNA聚合酶II羧基端结构域激酶CTDK-I及其亚基的结构与功能[J]. 微生物学报, 2018, 58(10): 1701-1710

复制
分享
文章指标
  • 点击次数:1468
  • 下载次数: 2003
  • HTML阅读次数: 4587
  • 引用次数: 0
历史
  • 收稿日期:2017-12-08
  • 最后修改日期:2018-01-31
  • 在线发布日期: 2018-09-28
文章二维码