生物表面活性剂Surfactin生产菌株的定向改造策略
作者:
基金项目:

国家自然科学基金(21576133),江苏省“六大人才高峰”资助项目


Directed modification of strains for surfactin production
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    表面活性素(Surfactin)是芽胞杆菌属(Bacillus sp.)代谢产生的脂肽类生物表面活性剂,是由非核糖体肽合成酶(NRPS)催化而得的一种次级代谢产物。由于surfactin具有稳定性好、可被降解、表面活性好等理化性质以及抑菌、抗肿瘤等生物活性,在医药、农业、食品、化妆品、石油开采等方面都具有很大的应用潜力。但是,天然菌株产率低、生产成本高等特点限制了surfactin的规模化应用。本文对surfactin的合成机理进行了简要阐述,并针对目前提升surfactin产量和改变结构组分的4种定向改造策略(启动子工程、强化外排分泌、改造NRPS结构域和脂肪酸链合成酶系)进行了综述,最后对surfactin的研究方向进行了展望。

    Abstract:

    Surfactin, a lipopeptide biosurfactant produced by Bacillus strains, is one of the most surface-active biosurfactant. It is assembled by nonribosomal peptide synthetases (NRPSs) as secondary metabolites in microorganism. Due to its good stability, biodegradability and excellent surface activity in extreme environments, surfactin is gaining increasing attention as a valuable chemical with great potential in medicine, agriculture, food, cosmetics and microbial enhanced oil recovery. However, the low yields and high production costs of natural strain largely limit the large-scale industrial applications of surfactin. This article briefly summarizes the mechanism for surfactin biosynthesis, and reviews the main strategy for improving the yield and changing structure of surfactin including promoter engineering, enhancing efflux system, modifying NRPS domain and engineering fatty acid synthetases. At last, we discussed the prospect of the research on surfactin in the future.

    参考文献
    [1] Meena KR, Kanwar SS. Lipopeptides as the antifungal and antibacterial agents:applications in food safety and therapeutics. BioMed Research International, 2015, 2015:473050.
    [2] Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis:isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications, 1968, 31(3):488-494.
    [3] Chen WC, Juang RS, Wei YH. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochemical Engineering Journal, 2015, 103:158-169.
    [4] Lai CC, Huang YC, Wei YH, Chang JS. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. Journal of Hazardous Materials, 2009, 167(1/3):609-614.
    [5] Henkel M, Geissler M, Weggenmann F, Hausmann R. Production of microbial biosurfactants:Status quo of rhamnolipid and surfactin towards large-scale production. Biotechnology Journal, 2017, 12(7):1600561.
    [6] Sieber SA, Marahiel MA. Molecular mechanisms underlying nonribosomal peptide synthesis:approaches to new antibiotics. Chemical Reviews, 2005, 36(24):715-738.
    [7] Yeh, E, Kohli RM, Bruner SD, Walsh CT. Type Ⅱ thioesterase restores activity of a nrps module stalled with an aminoacyl-S-enzyme that cannot be elongated. ChemBioChem, 2004, 5(9):1290-1293.
    [8] Shen QT, Chen XL, Sun CY, Zhang YZ, Jiang WH. Dissecting and exploiting nonribosomal peptide synthetases. Acta Biochimica et Biophysica Sinica, 2004, 36(4):243-249.
    [9] Liu XY, Ren B, Gao H, Liu M, Dai HQ, Song FL, Yu ZY, Wang SJ, Hu JC, Kokare CR, Zhang LX. Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS One, 2012, 7(5):e34430.
    [10] Zhu LY, Xu Q, Jiang L, Huang H, Li S. Polydiacetylene-based high-throughput screen for surfactin producing strains of Bacillus subtilis. PLoS One, 2014, 9(2):e88207.
    [11] Jiao S, Li X, Yu HM, Yang H, Li X, Shen ZY. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnology and Bioengineering, 2017, 114(4):832-842.
    [12] Yi GB, Liu Q, Lin JZ, Wang WD, Huang H, Li S. Repeated batch fermentation for surfactin production with immobilized Bacillus subtilis BS-37:two-stage pH control and foam fractionation. Journal of Chemical Technology and Biotechnology, 2017, 92(3):530-535.
    [13] Li X, Yang H, Zhang DL, Li X, Yu HM, Shen ZY. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis. Journal of Industrial Microbiology & Biotechnology, 2015, 42(1):93-103.
    [14] Sun HG, Bie XM, Lu FX, Lu YP, Wu Y, Lu ZX. Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Canadian Journal of Microbiology, 2009, 55(8):1003-1006.
    [15] Coutte F, Leclère V, Béchet M, Guez JS, Lecouturier D, Chollet-Imbert M, Dhulster P, Jacques P. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. Journal of Applied Microbiology, 2010, 109(2):480-491.
    [16] Willenbacher J, Mohr T, Henkel M, Gebhard S, Mascher T, Syldatk C, Hausmann R. Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on Surfactin production. Journal of Biotechnology, 2016, 224:14-17.
    [17] Deleu M, Lorent J, Lins L, Brasseur R, Braun N, Kirat KE, Nylander T, Dufrêne YF, Mingeot-Leclercq MP. Effects of surfactin on membrane models displaying lipid phase separation. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(2):801-815.
    [18] Tsuge K, Ohata Y, Shoda M. Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 2001, 45(12):3566-3573.
    [19] Cosby WM, Vollenbroich D, Lee OH, Zuber P. Altered srf expression in Bacillus subtilis Resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. Journal of Bacteriology, 1998, 180(6):1438-1445.
    [20] Roongsawang N, Washio K, Morikawa M. Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Sciences, 2010, 12(1):141-172.
    [21] Jung J, Yu KO, Ramzi AB, Choe SH, Kim SW, Han SO. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnology and Bioengineering, 2012, 109(9):2349-2356.
    [22] Wang X, Luo C, Chen Z. Three non-aspartate amino acid mutations in the ComA response regulator receiver motif severely decrease surfactin production, competence development and spore formation in Bacillus subtilis. New Biotechnology, 2009, 25(S1):S365-S366.
    [23] Baltz RH. Combinatorial biosynthesis of cyclic lipopeptide antibiotics:a model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synthetic Biology, 2012, 3(10):748-758.
    [24] Koglin A, Löhr F, Bernhard F, Rogov VV, Frueh DP, Strieter ER, Mofid MR, Güntert P, Wagner G, Walsh CT, Marahiel MA, Dötsch V. Structural basis for the selectivity of the external thioesterase of the surfactin synthetase. Nature, 2008, 454(7206):907-911.
    [25] Eppelmann K, Stachelhaus T, Marahiel MA. Exploitation of the Huang H, Li S. Cost-effective production of surfactin from xylose-rich corncob hydrolysate using Bacillus subtilis BS-37. Waste and Biomass Valorization, 2017:1-7. DOI:10.1007/s12649-017-0052-5.Niquille D, Hilvert D. Reprogramming nonribosomal peptide synthetases for "clickable" amino acids. Angewandte Chemie International Edition, 2014, 53(38):10105-10108.
    [27] Mootz HD, Kessler N, Linne U, Eppelmann K, Schwarzer D, Marahiel MA. Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. Journal of the American Chemical Society, 2002, 124(37):10980-10981.
    [28] Reznik GO, Vishwanath P, Pynn MA, Sitnik JM, Todd JJ, Wu J, Jiang Y, Keenan BJ, Castle AB, Haskel RF, Smith TF, Somasundaran P, Jarrell KA. Use of sustainable chemistry to produce an acyl amino acid surfactant. Applied Microbiology and Biotechnology, 2010, 86(5):1387-1397.
    [29] Marti ME, Colonna WJ, Reznik G, Pynn M, Jarrel K, Lamsal B, Glatz CE. Production of fatty-acyl-glutamate biosurfactant by Bacillus subtilis on soybean co-products. Biochemical Engineering Journal, 2015, 95:48-55.
    [30] Jiang J, Gao L, Bie XM, Lu ZX, Liu HX, Zhang C, Liu FX, Zhao HZ. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiology, 2016, 16(1):31.
    [31] Dhali D, Coutte F, Arias AA, Auger S, Bidnenko V, Chataigné G, Lalk M, Niehren J, Sousa JD, Versari C, Jacques P. Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C14 isoform. Biotechnology Journal, 2017, 12(7). DOI:10. 1002/biot. 201600574.
    [32] Li Y, Zou AH, Ye RQ, Mu BZ. Effects of molecular structure on surfactin micellization activity. Acta Physico-Chimica Sinica, 2011, 27(5):1128-1134. (in Chinese) 李翌, 邹爱华, 叶汝强, 牟伯中. 表面活性素分子结构对其胶束化行为的影响. 物理化学学报, 2011, 27(5):1128-1134.
    [33] Youssef NH, Duncan KE, McInerney MJ. Importance of 3-hydroxy fatty acid composition of lipopeptides for biosurfactant activity. Applied and Environmental Microbiology, 2005, 71(12):7690-7695.
    [34] Liu Q, Lin JZ, Wang WD, Huan H, Li S. Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochemical Engineering Journal, 2015, 93:31-37.
    [35] Abdel-Mawgoud AM, Lépine F, Déziel E. Rhamnolipids:diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology, 2010, 86(5):1323-1336.
    [36] van Bogaert INA, Saerens K, de Muynck C, Develter D, Soetaert W, Vandamme EJ. Microbial production and application of sophorolipids. Applied Microbiology and Biotechnology, 2007, 76(1):23-34.
    [37] Yao SL, Lu ZX, Hao TY, Lv FX, Bie XM. Effect of amino acids and carbon backbone precursors on surfactin biosynthesis. Journal of Nanjing Agricultural University, 2014, 37(2):139-145. (in Chinese) 姚树林, 陆兆新, 郝天怡, 吕凤霞, 别小妹. 氨基酸和碳架物质前体对surfactin生物合成的影响. 南京农业大学学报, 2014, 37(2):139-145.
    [38] Liu JF, Yang J, Yang SZ, Ye RQ, Mu BZ. Effects of different amino acids in culture media on surfactin variants produced by Bacillus subtilis TD7. Applied Biochemistry and Biotechnology, 2012, 166(8):2091-2100.
    [39] Coutte F, Niehren J, Dhali D, John M, Versari C, Jacques P. Modeling leucine's metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Biotechnology Journal, 2015, 10(8):1216-1234.
    [40] Kraas FI, Helmetag V, Wittmann M, Strieker M, Marahie MA. Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chemistry & Biology, 2010, 17(8):872-880.
    [41] Inès M, Dhouha G. Lipopeptide surfactants:production, recovery and pore forming capacity. Peptides, 2015, 71:100-112.
    [42] Chen C, Lin JZ, Wang WD,
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡仿香,李霜. 生物表面活性剂Surfactin生产菌株的定向改造策略[J]. 微生物学报, 2018, 58(10): 1711-1721

复制
分享
文章指标
  • 点击次数:1740
  • 下载次数: 2104
  • HTML阅读次数: 3646
  • 引用次数: 0
历史
  • 收稿日期:2017-12-13
  • 最后修改日期:2018-01-23
  • 在线发布日期: 2018-09-28
文章二维码