植被退化对滇西北高寒草地土壤微生物群落的影响
作者:
基金项目:

国家自然科学基金(41401293,41771286);江苏省自然科学基金(BK20141051)


Effect of vegetation degradation on microbial communities in alpine grassland soils in Northwest Yunnan
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]在同尺度下比较我国滇西北高寒草地土壤(GS)及其退化土壤(DGS)中细菌和真菌群落,研究植被退化对高寒草地土壤微生物群落的影响,并探索其环境驱动因子。[方法]分别以16S rRNA基因和ITS基因作为细菌和真菌分子生态学分析的靶标基因,采用定量PCR法测定基因数量来表征微生物群落丰度,采用Illumina Hiseq测序及生物信息学分析研究土壤微生物群落组成和群落结构。[结果]草地退化后,土壤pH值显著上升0.65个单位,土壤水分、总有机碳、可溶性氮含量和C/N比分别显著下降了18.4%、67.5%、47.2%和71.2%;草地退化显著降低了土壤细菌和真菌群落丰度,降低幅度分别为92.4%和94.9%;草地退化没有影响土壤细菌和真菌群落α-多样性,但显著改变了细菌和真菌群落β-多样性(群落结构);草地退化改变了土壤细菌和真菌在OTU水平上的物种组成,土壤真菌OTU种类变化更为显著;草地退化没有影响土壤细菌在门水平上的群落组成,但改变了细菌在纲水平上的群落组成(如Acidimicrobiia、Betaproteobacteria、Chloroplast等);草地退化没有影响土壤真菌在门水平和纲水平上的群落组成。[结论]本研究发现植被退化后滇西北高寒草地土壤质量显著降低,寄居在土壤中的微生物群落丰度也显著降低、微生物群落结构明显改变。

    Abstract:

    [Objective] By comparing the bacterial and fungal communities in alpine grassland soil and their degraded soil in Northwest Yunnan, we investigated the effect of vegetation degradation on microbial communities in alpine grassland soils.[Methods] Bacterial 16S rRNA genes and fungal ITS genes were chosen as the target genes. Quantitative PCR was performed to measure the gene copies to assess the abundance of microbial communities. Illumina Hiseq sequencing and bioinformatics analysis were carried out to determine microbial community composition and community structure.[Results] After grassland degradation, soil pH value was greatly increased by 0.65 units, and soil moisture, total organic carbon, dissolved nitrogen and C/N ratio were significantly decreased by 18.4%, 67.5%, 47.2% and 1.2%, respectively. Grassland degradation significantly reduced soil bacterial and fungal community abundances by 92.4% and 94.9%, respectively. Grassland degradation significantly altered the β-diversity of soil bacterial and fungal community, but had no effect on that of α-diversity. In addition, grassland degradation changed the species composition of soil bacterial and fungal communities at the OTU level, and the fungal OTUs changed largely. Grassland degradation had no effect on bacterial community composition at the phylum level, but changed the composition at the class level (such as Acidimicrobiia, Betaproteobacteria, Chloroplast etc.). No significant difference was detected in fungal community composition between grassland soils and degraded soils.[Conclusion] These findings suggested that the vegetation degradation in alpine grassland lead to a decline in soil quality and microbial abundance, and changes in microbial community structure.

    参考文献
    [1] Gang CC, Zhou W, Chen YZ, Wang ZQ, Sun ZG, Li JL, Qi JG, Odeh I. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environmental Earth Sciences, 2014, 72(11):4273-4282.
    [2] 周兴民. 中国嵩草草甸. 北京:科学出版社, 2001.
    [3] Tan HY, Chen BR, Yan RR, Xin XP, Tao J. Advances on soil microbiological characteristics of grassland ecosystems and its response to human disturbances. Acta Agrestia Sinica, 2014, 22(6):1163-1170. (in Chinese)谭红妍, 陈宝瑞, 闫瑞瑞, 辛晓平, 陶金. 草地土壤微生物特性及其对人为干扰响应的研究进展. 草地学报, 2014, 22(6):1163-1170.
    [4] Karaca A, Cetin SC, Turgay OC, Kizilkaya R. Soil enzymes as indication of soil quality//Shukla G, Varma A. Soil Enzymology. Berlin Heidelberg:Springer, 2010, 22:119-148.
    [5] Zhao CZ, Gao FY, Shi FX, Ren H, Sheng YP. Melica przewalskyi population spatial pattern and response to soil moisture in degraded alpine grassland. Acta Ecologica Sinica, 2011, 31(22):6688-6695. (in Chinese)赵成章, 高福元, 石福习, 任珩, 盛亚萍. 高寒退化草地甘肃臭草种群分布格局及其对土壤水分的响应. 生态学报, 2011, 31(22):6688-6695.
    [6] Yin YL, Wang YQ, Bao GS, Wang HS, Li SX, Song ML, Shao BL, Wen YC. Characteristics of soil microbes and enzyme activities in different degraded alpine meadows. Chinese Journal of Applied Ecology, 2017, 28(12):3881-3890. (in Chinese)尹亚丽, 王玉琴, 鲍根生, 王宏生, 李世雄, 宋梅玲, 邵宝莲, 温玉存. 退化高寒草甸土壤微生物及酶活性特征. 应用生态学报, 2017, 28(12):3881-3890.
    [7] Jiang YM, Shi SL, Tian YL, Lu H, Li HY, Li JH, Lan XJ, Yao T. Characteristics of soil microorganism and soil enzyme activities in alpine meadows under different degrees of degradation. Journal of Soil and Water Conservation, 2017, 31(3):244-249. (in Chinese)蒋永梅, 师尚礼, 田永亮, 卢虎, 李海云, 李建宏, 兰晓君, 姚拓. 高寒草地不同退化程度下土壤微生物及土壤酶活性变化特征. 水土保持学报, 2017, 31(3):244-249.
    [8] Shao YQ, Ao XL, Song GB, Liu RF, Li H. Soil microbial biomass in degenerated and recovered grasslands of Huangfuchuan watershed. Chinese Journal of Ecology, 2005, 24(5):578-580, 584. (in Chinese)邵玉琴, 敖晓兰, 宋国宝, 刘瑞凤, 李华. 皇甫川流域退化草地和恢复草地土壤微生物生物量的研究. 生态学杂志, 2005, 24(5):578-580, 584.
    [9] Sun FD, Qing Y, Zhu C, Lu H, Hu YQ, Li Y, Chen WY. Analysis of soil enzyme activities and microbial community characteristics in degraded alpine grassland, Zoige, southwest China. Journal of Arid Land Resources and Environment, 2016, 30(7):119-125. (in Chinese)孙飞达, 青烨, 朱灿, 路慧, 胡亚茜, 李勇, 陈文业. 若尔盖高寒退化草地土壤水解酶活性和微生物群落数量特征分析. 干旱区资源与环境, 2016, 30(7):119-125.
    [10] García C, Hernández T. Biological and biochemical indicators in derelict soils subject to erosion. Soil Biology and Biochemistry, 1997, 29(2):171-177.
    [11] 乔鹏云. 放牧对陇东半干旱草地土壤微生物的影响. 兰州大学硕士学位论文, 2008.
    [12] Cai XB, Qian C, Zhang YQ. Characterization of soil biological properties on degraded alpine grasslands. Chinese Journal of Applied Ecology, 2007, 18(8):1733-1738. (in Chinese)蔡晓布, 钱成, 张永清. 退化高寒草原土壤生物学性质的变化. 应用生态学报, 2007, 18(8):1733-1738.
    [13] Wang XC, Liu SZ, Ma YD, Wang JY, Wang XD, Bao YTGT, Gao Y, Zhang RM. PCR-DGGE analysis of effect of grazing on bacteria and fungal community in Rhizosphere soil of Artemisia frigida. Journal of Inner Mongolia Agricultural University, 2008, 38(6):38-47. (in Chinese)王鑫朝, 刘守赞, 马元丹, 汪俊宇, 王小东, 宝音陶格涛, 高岩, 张汝民. 放牧对冷蒿根际土壤细菌和真菌多样性影响的PCR-DGGE分析. 内蒙古农业大学学报, 2018, 38(6):38-47.
    [14] 鲁如坤. 土壤农业化学分析方法. 北京:中国农业科技出版社, 1999.
    [15] Parada AE, Needham DM, Fuhrman JA. Every base matters:assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 2016, 18(5):1403-1414.
    [16] Zhang LK, Kang MY, Huang YC, Yang LX. Fungal communities from the calcareous deep-sea sediments in the Southwest India Ridge revealed by Illumina sequencing technology. World Journal of Microbiology and Biotechnology, 2016, 32:78.
    [17] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Goodrich JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QⅡME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5):335-336.
    [18] Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, 26(19):2460-2461.
    [19] Bardgett RD, Freeman C, Ostle NJ. Microbial contributions to climate change through Carbon cycle feedbacks. The ISME Journal, 2008, 2(8):805-814.
    [20] Peng YL, Cai XB, Xue HY. Study on the variation characteristics of soil microbial biomass in the degraded alpine steppes. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(4):112-115. (in Chinese)彭岳林, 蔡晓布, 薛会英. 退化高寒草原土壤微生物变化特性研究. 西北农业学报, 2007, 16(4):112-115.
    [21] Lipson DA, Schmidt SK. Seasonal changes in an alpine soil bacterial community in the Colorado rocky mountains. Applied and Environmental Microbiology, 2004, 70(5):2867-2879.
    [22] Xia WW, Jia ZJ. Comparative analysis of soil microbial communities by pyrosequencing and DGGE. Acta Microbiologica Sinica, 2014, 54(12):1489-1499. (in Chinese)夏围围, 贾仲君. 高通量测序和DGGE分析土壤微生物群落的技术评价. 微生物学报, 2014, 54(12):1489-1499.
    [23] 段红芳. 青藏高原退化高寒草地生态系统中微生物群落结构多样性变化研究. 兰州大学硕士学位论文, 2013.
    [24] Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied Environmental Microbiology, 2009, 75(15):5111-5120.
    [25] Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4(10):1340-1351.
    [26] 吴永胜. 内蒙古荒漠草原不同退化阶段土壤微生物变化的研究. 内蒙古师范大学硕士学位论文, 2008.
    [27] Shao W, Cai XB. Grassland degradation and its formation causes analysis in Tibetan plateau. Science of Soil and Water Conservation, 2008, 6(1):112-116. (in Chinese)邵伟, 蔡晓布. 西藏高原草地退化及其成因分析. 中国水土保持科学, 2008, 6(1):112-116.
    [28] Wang X, Cheng L. Soil bacterial community composition and diversity of five soil types in Qinghai-Tibetan Plateau. Acta Agriculturae Zhejiangensis, 2017, 29(11):1882-1889. (in Chinese)王信, 程亮. 青藏高原5种类型土壤细菌群落结构差异. 浙江农业学报, 2017, 29(11):1882-1889.
    [29] Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schoning I, Schrumpf M, Daniel R. Pyrosequencing-based assessment of bacterial community structure along different management types in german forest and grassland soils. PLoS One, 2011, 6(2):e17000.
    [30] Frey SD, Knorr M, Parrent JL, Simpson RT. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 2004, 196(1):159-171.
    [31] Zhang YN, Li YL, Wang L, Tang YS, Chen JH, Hu Y, Fu XH, Le YQ. Soil microbiological variability under different successional stages of the Chongming Dongtan wetland and its effect on soil organic carbon storage. Ecological Engineering, 2013, 52:308-315.
    [32] Li CH, Zhang CX, Tang LS, Xiong ZQ, Wang BZ, Jia ZJ, Li Y. Effect of long-term fertilizing regime on soil microbial diversity and soil property. Acta Microbiologica Sinica, 2014, 54(3):319-329. (in Chinese)李晨华, 张彩霞, 唐立松, 熊正琴, 王保战, 贾仲君, 李彦. 长期施肥土壤微生物群落的剖面变化及其与土壤性质的关系. 微生物学报, 2014, 54(3):319-329.
    [33] Zhang J, Zhang HW, Li XY, Zhang CG. Research advances in soil fungal diversity and molecular ecology. Chinese Journal of Applied Ecology, 2004, 15(10):1958-1962. (in Chinese)张晶, 张惠文, 李新宇, 张成刚. 土壤真菌多样性及分子生态学研究进展. 应用生态学报, 2004, 15(10):1958-1962.
    [34] Gu AX, Fan YM, Wu HQ, Zhu JZ, Jin GL, Re ZWGL. Relationship between the number of three main microorganisms and the soil environment of degraded grassland on the north slope of the Tianshan Mountains. Acta Prataculturae Sinica, 2010, 19(2):116-123. (in Chinese)顾爱星, 范燕敏, 武红旗, 朱进忠, 靳瑰丽, 热孜万古丽. 天山北坡退化草地土壤环境与微生物数量的关系. 草业学报, 2010, 19(2):116-123.
    [35] Zhang JZ, Chen XR, Yang CD, Xue L. A study on the diversity of soil cultured fungi in the alpine grassland of Eastern Qilian Mountains. Acta Prataculturae Sinica, 2010, 19(2):124-132. (in Chinese)张俊忠, 陈秀蓉, 杨成德, 薛莉. 东祁连山高寒草地土壤可培养真菌多样性分析. 草业学报, 2010, 19(2):124-132.
    [36] Li G, Fan BL, Wendu RL, Yang DL. Analysis of soil fungal community structure of Stipa steppes in Hulunbuir, Inner Mongoia. Acta Pedologiga Sinca, 2011, 48(5):1096-1102. (in Chinese)李刚, 范宝莉, 文都日乐, 杨殿林. 呼伦贝尔针茅草原土壤真菌群落结构分析. 土壤学报, 2011, 48(5):1096-1102.
    [37] 卢虎. 祁连山不同退化草地土壤微生物特性研究. 甘肃农业大学博士学位论文, 2015.
    [38] Ju TZ, Chen Y, Chang CH, An LZ. The diversity of soil fungi and its relations with fertility factors in Taxus chinensis (Pilg.) Rehd Community of Xiaolongshan of Tianshui City. Research of Environmental Sciences, 2008, 21(1):128-132. (in Chinese)巨天珍, 陈源, 常成虎, 安黎哲. 天水小陇山红豆杉(Taxus chinensis(Pilg.) Rehd)林土壤真菌多样性及其与生态因子的相关性. 环境科学研究, 2008, 21(1):128-132.
    [39] 李玲. 北方主要草地类型中土壤真菌多样性及群落结构的比较研究. 东北师范大学硕士学位论文, 2015.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

金志薇,钟文辉,吴少松,韩成. 植被退化对滇西北高寒草地土壤微生物群落的影响[J]. 微生物学报, 2018, 58(12): 2174-2185

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-01-24
  • 最后修改日期:2018-03-29
  • 在线发布日期: 2018-12-05
文章二维码