13C-标记秸秆添加对DNA稳定性同位素探针试验结果的影响
作者:
基金项目:

国家自然科学基金(41430859);中国科学院先导专项(XDB15020103)


Effect of 13C-labled straw on the results of DNA stable isotope probing experiments
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]稳定性同位素探针技术(stable isotope probing,SIP)是采用稳定性同位素示踪复杂环境中具有代谢活性微生物的有力工具。然而,在近期利用SIP技术的研究当中,我们发现13C-标记物对试验本身有一定程度影响。例如研究土壤秸秆降解微生物,需将13C-标记作物秸秆添加到土壤,利用微域培养实验和DNA-SIP技术解析主导降解微生物物种。但是13C秸秆的添加以及不同土壤肥力水平是否会影响土壤微生物群落有待商榷。[方法]本研究采集江西鹰潭红壤试验站3种施肥处理(Control、NPK、OM)水稻土壤,分别添加自然丰度(12C)和13C-标记的高丰度水稻秸秆,进行微域培养试验,研究两种秸秆添加下的响应物种以及不同丰度C对生物质气体的累积排放、细菌α-多样性以及群落结构的影响。[结果]研究发现,3种施肥土壤下,2种丰度秸秆处理间C累计排放无差异。但是,寡营养条件(Control)下,13C-标记秸秆处理的细菌α-多样性高,12C秸秆处理群落异质性高,稳定性较差,无差异性物种;与12C秸秆处理相比,富营养条件(NPK和OM)下,13C-标记秸秆处理的细菌α-多样性和群落结构无差异,但存在差异物种,主要集中于变形菌门和稀有物种。[结论]本研究的结果表明13C标记秸秆对微生物群落有一定影响,因此在后续的SIP试验中,高丰度秸秆虽可被用来作为标记底物,但需慎用。

    Abstract:

    [Objective] DNA-based stable isotope probing (DNA-SIP) is a powerful tool for tracing substrate assimilated microorganisms in complex environments. However, in recent studies involving SIP, we found that 13C utilization may interfere with experiment results. For example, when microcosm and DNA-SIP are applied to study straw degradation microorganism, 13C-labled straw is bound to be amended, but whether the amendment as well as the fertilization of soil will affect the microbial communities is still unknown.[Methods] We sampled three fertilized (Control, NPK, OM) paddy soil from Yingtan red soil ecological experimental station to study the difference of biogas emission, microbial diversity and responding species among three fertilized soils and two kinds of straw. Microcosms were conducted with 12C and 13C-labled straw amendments afterwards.[Results] We found that no difference of accumulative C emission was detected among three soils with 12C and 13C-labled straw amendments. Under oligotrophic (Control) conditions, soil bacterial communities of 13C-labeled treatment represented a higher diversity while microbial heterogenicity was higher in 12C-labeled treatment, and discrepant species were hardly detected between these two treatments. Under copiotrophic (NPK and OM) conditions, bacterial communities of 13C-labeled straw treatment performed no difference on both their diversity and structure, but discrepant species were detected, mainly belong to Proteobacteria and rare species. [Conclusion] Our results showed that 13C-labeled straw did affect bacterial communities to some extent. Hence, as labeling substrate, high abundance straw can be applied, but it need to be cautious in the following SIP experiments.

    参考文献
    [1] Harris J. Soil microbial communities and restoration ecology:facilitators or followers? Science, 2009, 325(5940):573-574.
    [2] Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in Soil. Science, 2005, 309(5739):1387-1390.
    [3] Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF. Methane-consuming archaebacteria in marine sediments. Nature, 1999, 398(6730):802-805.
    [4] Lu YH, Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 2005, 309(5737):1088-1090.
    [5] Morris SA, Radajewski S, Willison TW, Murrell JC. Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Applied and Environmental Microbiology, 2002, 68(3):1446-1453.
    [6] Chen Z, Luo XQ, Hu RG, Wu MN, Wu JS, Wei WX. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microbial Ecology, 2010, 60(4):850-861.
    [7] Liu H, Jiang GM, Zhuang HY, Wang KJ. Distribution, utilization structure and potential of biomass resources in rural China:with special references of crop residues. Renewable and Sustainable Energy Reviews, 2008, 12(5):1402-1418.
    [8] Neufeld JD, Wagner M, Murrell JC. Who eats what, where and when? Isotope-labelling experiments are coming of age. The ISME Journal, 2007, 1(2):103-110.
    [9] Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology, 2002, 148(8):2331-2342.
    [10] Whitby CB, Hall G, Pickup R, Saunders JR, Ineson P, Parekh NR, McCarthy A. 13C incorporation into DNA as a means of identifying the active components of ammonia-oxidizer populations. Letters in Applied Microbiology, 2001, 32(6):398-401.
    [11] Shrestha M, Shrestha PM, Conrad R. Bacterial and archaeal communities involved in the in situ degradation of 13C-labelled straw in the rice rhizosphere. Environmental Microbiology Reports, 2011, 3(5):587-596.
    [12] Fan FL, Yin C, Tang YJ, Li ZJ, Song AL, Wakelin SA, Zou J, Liang YC. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biology and Biochemistry, 2014, 70:12-21.
    [13] Radajewski S, Ineson P, Parekh NR, Murrell JC. Stable-isotope probing as a tool in microbial ecology. Nature, 2000, 403(6770):646-649.
    [14] Murrell JC, Whiteley AS. Stable Isotope Probing and Related Technologies. Washington DC:ASM Press, 2011.
    [15] Radajewski S, McDonald IR, Murrell JC. Stable-isotope probing of nucleic acids:a window to the function of uncultured microorganisms. Current Opinion in Biotechnology, 2003, 14(3):296-302.
    [16] Post DM. Using stable isotopes to estimate trophic position:Models, methods, and assumptions. Ecology, 2002, 83(3):703-718.
    [17] Simpson PC, Roach D, Woolley AT, Thorsen T, Johnston R, Sensabaugh GF, Mathies RA. High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(5):2256-2261.
    [18] Wang J, Lu JM, Hocevar SB, Farias PAM, Ogorevc B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Analytical Chemistry, 2000, 72(14):3218-3222.
    [19] Feng YZ, Lin XG, Zhu JG, Jia ZJ. A phototrophy-driven microbial food web in a rice soil. Journal of Soils and Sediments, 2011, 11(2):301-311.
    [20] Bei QC, Liu G, Tang HY, Cadisch G, Rasche F, Xie ZB. Heterotrophic and phototrophic 15N2 fixation and distribution of fixed 15N in a flooded rice-soil system. Soil Biology and Biochemistry, 2013, 59:25-31.
    [21] Feng YZ, Chen RR, Hu JL, Zhao F, Wang JH, Chu HY, Zhang JB, Dolfing J, Lin XG. Bacillus asahii comes to the fore in organic manure fertilized alkaline soils. Soil Biology and Biochemistry, 2015, 81:186-194.
    [22] Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21):2957-2963.
    [23] Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10):996-998.
    [24] Pais FSM, Ruy PC, Oliveira G, Coimbra RS. Assessing the efficiency of multiple sequence alignment programs. Algorithms for Molecular Biology, 2014, 9(1):4.
    [25] Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16):5261-5267.
    [26] Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49):E7996-E8005.
    [27] Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions:What null hypothesis are you testing? Ecological Monographs, 2013, 83(4):557-574.
    [28] Friedrich MW. Stable-isotope probing of DNA:insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Current Opinion in Biotechnology, 2006, 17(1):59-66.
    [29] Lukas S, Potthoff M, Dyckmans J, Joergensen RG. Microbial use of 15N-labelled maize residues affected by winter temperature scenarios. Soil Biology and Biochemistry, 2013, 65:22-32.
    [30] Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology, 2007, 88(6):1354-1364.
    [31] Reinertsen SA, Elliott LF, Cochran VL, Campbell GS. Role of available carbon and nitrogen in determining the rate of wheat straw decomposition. Soil Biology and Biochemistry, 1984, 16(5):459-464.
    [32] Chen RR, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin XG, Blagodatskaya E, Kuzyakov Y. Soil C and N availability determine the priming effect:microbial N mining and stoichiometric decomposition theories. Global Change Biology, 2014, 20(7):2356-2367.
    [33] Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, Richter A. Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS Microbiology Ecology, 2014, 87(1):142-152.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

詹雨珊,张建伟,冯有智. 13C-标记秸秆添加对DNA稳定性同位素探针试验结果的影响[J]. 微生物学报, 2019, 59(1): 103-112

复制
分享
文章指标
  • 点击次数:1189
  • 下载次数: 2170
  • HTML阅读次数: 2179
  • 引用次数: 0
历史
  • 收稿日期:2018-02-11
  • 最后修改日期:2018-04-11
  • 在线发布日期: 2018-12-29
文章二维码