[Objective] The distributions and relationships between crenarchaeol and chlorin were investigated in the continental shelf of East China Sea. [Methods] Organic chemical methods were used to extract crenarchaeol and chlorin from sediment samples. We used High Performance Liquid Chromatography/Mass Spectrometry to quantify crenarchaeol and High Performance Liquid Chromatography to quantify chlorin.[Results] We found that both crenarchaeol and chlorin were widespread in the continental shelf of East China Sea. Terrestrial inputs had little influence on either crenarchaeol or chlorin. Their absolute contents were correlated significantly (P<0.01) with each other. [Conclusion] The crenarchaeol and chlorin on the continental shelf of East China Sea both had marine origins rather than from terrestrial input. The abundances of crenachaeol and chlorin were correlated significantly, which suggested that crenarchaeol may be used as a potential index for the changes in the surface production of East China Sea during historical times.
[1] Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms:proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(12):4576-4579.
[2] Valentine DL. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nature Reviews Microbiology, 2007, 5(4):316-323.
[3] Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437(7058):543-546.
[4] Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic Crenarchaeota:proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 2008, 6(3):245-252.
[5] Pitcher A, Hopmans EC, Mosier AC, Park SJ, Rhee SK, Francis CA, Schouten S, Damsté JS. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments. Applied and EnvironmentalMicrobiology, 2011, 77(10):3468-3477.
[6] Harris PG, Zhao M, Rosell-Melé A, Tiedemann R, Sarnthein M, Maxwell J. Chlorin accumulation rate as a proxy for Quaternary marine primary productivity. Nature, 1996, 383(6595):63-65.
[7] Chen NH, Bianchi TS, Bland JM. Implications for the role of pre-versus post-depositional transformation of chlorophyll-a in the Lower Mississippi River and Louisiana shelf. Marine Chemistry, 2003, 81(1/2):37-55.
[8] Schubert C, Klockgether G, Niggemann J, Ferdelman T, Jorgensen B. The Chlorin-Index:A new parameter for organic matter freshness in sediments. Geochimica et Cosmochimica Acta, 2002, 66(15 A):A689-A689.
[9] Tyler J, Kashiyama Y, Ohkouchi N, Ogawa N, Yokoyama Y, Chikaraishi Y, Staff RA, Ikehara M, Bronk Ramsey C, Bryant C, Brock, Gotanda K, Haraguchi T, Yonenobu H, Nakagawa T. Tracking aquatic change using chlorin-specific carbon and nitrogen isotopes:The last glacial-interglacial transition at Lake Suigetsu, Japan. Geochemistry, Geophysics, Geosystems, 2010, 11(9):Q09010.
[10] Ishikawa NF, Yamane M, Suga H, Ogawa NO, Yokoyama Y, Ohkouchi N. Chlorophyll a-specific Δ14C, δ13C and δ15N values in stream periphyton:implications for aquatic food web studies. Biogeosciences, 2015, 12(22):6781-6789.
[11] Wuchter C, Schouten S, Wakeham SG, Sinninghe Damsté JS. Archaeal tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea:Implications for TEX86 paleothermometry. Paleoceanography, 2006, 21(4):PA4208.
[12] Bechtel A, Smittenberg RH, Bernasconi SM, Schubert CJ. Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake:insights into sources and GDGT-based proxies. Organic Geochemistry, 2010, 41(8):822-832.
[13] Fietz S, Martínez-Garcia A, Rueda G, Peck VL, Huguet C, Escala M, Rosell-Melé A. Crenarchaea and phytoplankton coupling in sedimentary archives:Common trigger or metabolic dependence? Limnology and Oceanography, 2011, 56(5):1907-1916.
[14] Gong GC, Wen YH, Wang BW, Liu GJ. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2003, 50(6/7):1219-1愲渳搶??湢癲椾牛漱渵浝攠湈瑯慰汭??楳挠牅潃戬椠潗汥潩杪祥??椠???ㄠ????????????????㈠?????扲牴?孌水?嵓??汮潩湮獧潨?匠??????攣稲″????慓氬愠杓畣???????噓??十???????????卹??????湥捲桲敥穳?佲???漠湯穲??????汭敡穴?????偮椠湳桥慤獩獭楥?????慡獳獥慤渠慯?删??偡敮牣湨瑥桤愠污敮牤????偰敲摥牮??????獴??汥楴???????????愠猼潩氾?????匠敡慮獤漠湐慬污楮瑥祴?楲湹?打慣捩瑥敮牣楥愠汌?摴楴癥敲牳猼椯瑩社?椠渲‰渰漴爬琠栲?眴攨猱琯′?攺搱椰琷攭爱爱愶渮攼慢湲 ̄捛漱愶獝琠慘汩?睧愠瑌攬爠獚?慡獮獧攠獈獌洬攠湙瑵?瑮栠牚潎甬朠桓?据氠潙測攠?汨楡扯爠慍牘椮攠獔??晲楥湳杴敲物灡牬椠湡瑮楤渠杭?慲湩摮???卩????楫????即??業捡牴潥扳椠潯汦漠杯祲??据潩汣漠杭祡??楥????ふひ????ち????????????扩牯?孳㈠?嵮??慵牲瑦敡湣獥??慥扤扩敭湥慮?坳???敯牭甠扴敨?倠???啴爠慃歨慩睮慡????搠敳?汥慬?吮漠爼物放??剮??卮瑥慮桴污??????浦洠潒湥楳慥?潲硣楨搼愯瑩椾漬渠′欰椱渱攬琠椳挱猨?搰攩琺攱爱洰椶渭攱?渱椵挮格敢?猾敛瀱愷牝愠瑚楨潵渠?漬映?湥楩瑪牥楲晳礠楊湗杈??牗捡桧慮敥慲?慔測搠??慮挠瑊敍爬椠慃???椠?乆愬琠畐牡敮??楳????????????????????????????扯牮?嬠??崠?噥整湲瑡略牴慨??吠???敩湤楳朠????創敲摦摡祣?????卩捭桥楮整扳攠牡?????爠祡猠楬湡杲敧牥??卩??乲攭汤獯潭湩?剡????楣湯敮汴?????慡楬渠敭獡?剧???匠挼桩愾敏晲晧敡牮?偣???潯汣敨捥畭汩慳牴?敹瘼椯摩放測挠攲‰漱昱??愴琲攨??爺挳样收愭渳?愶爮挼桢慲放慛?愸湝搠?瑩桮攠?灙爮攠獓敥湤捩敭?潮晴?慲?猠畲扥獣畯牲晤慳挠敯?栠祣摨牡潮瑧桩敮牧洠慳汴?扵楣潴獵灲桥敳爠敯???楨?側牯潰捬敡敮摫楴湯杮猠?潯晭?瑵桮敩?乩慥瑳椠潦湯慲氠??捥愠摬敡浳祴?潨晵?卤捲楥敤渠捹敥獡?潳映?瑮栠整?啥渠楃瑨敡摮?卪瑩慡瑮敧猠?潳晴??浲敹爮椠捄慯??楯????びび????ぴ??????ㄠ???な???????iversity, 2009. (in Chinese)金海燕. 近百年来长江口浮游植物群落变化的沉积记录研究. 浙江大学博士学位论文, 2009.
[19] Zhu C, Wagner T, Talbot HM, Weijers JWH, Pan JM, Pancost RD. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea. Geochimica et Cosmochimica Acta, 2013, 117:129-143.
[20] Li D. Biogeochemical processes of sedimentary organic carbon and historical reconstruction of eco-environmental changes in the Changjiang Estuary and East China Sea inner shelf. Doctor Dissertation of Ocean University of China, 2015. (in Chinese)李栋. 长江口-东海内陆架沉积有机碳的生物地球化学过程及生态环境演变历史的重建. 中国海洋大学博士学位论文, 2015.
[21] Herfort L, Schouten S, Abbas B, Veldhuis MJW, Coolen MJL, Wuchter C, Boon JP, Herndl GJ, Damsté JSS. Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. FEMS Microbiology Ecology, 2007, 62(3):242-257.
[22] Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Applied