棕榈科植物种子内生细菌群落多样性的高通量测序分析
作者:

Diversity of bacterial endophytes communities in the seeds of several Palmae plants via high throughput sequencing method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]探究棕榈科种子内生细菌群落组成及其随物种的差异。[方法]运用MiSeq高通量方法测定蒲葵、棕榈、加拿利海枣、山棕、软叶刺葵、短穗鱼尾葵及三药槟榔7种棕榈科种子内生细菌群落16S rRNA基因V3–V4区序列并进行生物信息学分析。[结果]7种测试种子中获得的V3–V4区有效序列数在2341–40671条之间,聚成97–590个操作分类单元(OTU),Shannon指数计算为1.35–2.94,以加拿利海枣种子最高,山棕种子最低;种群归类结果显示不同种子中测得的各级细菌分类阶层总数及组成不同,总丰度以厚壁菌门的肠球菌属最高,同为厚壁菌门的芽孢杆菌属次之;属级水平上,第一优势细菌属分别为:蒲葵种子(芽孢杆菌属,45.8%),棕榈种子(肠球菌属,51.2%),山棕种子(肠球菌属,12.1%),短穗鱼尾葵种子(肠球菌属,32.6%),三药槟榔种子(肠球菌属,42.9%),软叶刺葵种子(肠球菌属,28.3%),加拿利海枣种子(糖多孢菌属,31.2%)。各种子中次优势细菌属分别为:蒲葵种子(乳球菌属),棕榈、山棕及三药槟榔种子(类芽孢杆菌属),加拿利海枣种子(戈登氏菌属),软叶刺葵和短穗鱼尾葵种子(鞘脂单胞菌属);PICRUST基因预测显示各种子均包含多个与人体器官及人类疾病相关的KEGG功能模块。此外,各种子中均产生了丰度较高的外源物质降解、萜和聚酮合成、多糖合成等有益功能信息。[结论]棕榈科植物种子内生细菌群落多样性较为丰富,群落组成随物种不同而异。各种子内生细菌群体中普遍含多个与人和动物体相关的种群和功能信息,也定殖多种具有益功能性状的细菌类群,值得进一步研究。

    Abstract:

    [Objective] To explore the diversity of bacterial endophyte communities in the seeds of Palmae plants species.[Methods] We investigated and characterized bacterial endophytes communities in the seeds of 7 different plant species within Palmae, including Livistona chinensis, Trachycarpus fortuneii, Phoenix canariensis, Arenga engleri, P. roebelenii, Caryota mitis and Areca triandra, by a MiSeq high throughput sequencing method followed by bioinformatics analysis targeted at V3-V4 regions of the 16S rRNA gene. [Results] We recovered a total of 2341-40671 V3-V4 valid sequences of 16S rRNA gene from the tested seeds, which clustered into 97-590 distinct operational taxonomic units (OTUs). And the Shannon index was calculated to be varying in the range from 1.35 to 2.94, with the highest detected from P. canariensis seed and the lowest form A. engleri seed. The results of taxonomic assignment showed that the total number of taxonomic taxa and population composition detected in different seeds was different. At the genus level, the genus Enterococcus belonging to Firmicutes was found to be the highest in total abundance across all seeds, followed by Bacillus belonging to the same bacterial phylum. The most dominant bacterial genera detected from the tested seeds were as follow:L. chinensis seed (Bacillus, 45.8%), T. fortuneii seed (Enterococcus, 51.2%), A. engleri seed (Enterococcus, 12.1%), C. mitis seed (Enterococcus, 32.6%) A. triandra seed (Enterococcus, 42.9%), P. roebelenii seed (Enterococcus, 28.3%), P. canariensis seed (Saccharopolyspora, 31.2%). And the sub-dominant bacterial genera were: Lactococcus (L. chinensis seed), Paenibacillus (T. fortunei seed, A. engleri seed, and A. triandra seed), Goodfellowiella (P. canariensis seed), Sphingomonas (P. roebelenii seed, and C. mitis seed). Furthermore, PICRUSt was used to determine potential functional profiles associated with the recovered sequences. Several KEGG orthology (KO) terms related to the human organs and human diseases were inferred from this analysis. In addition, the KO terms related to biosynthesis of terpenoids, polyketides, and glycan, as well as xenobiotics biodegradation showed relative high abundance in the predicted KO terms of the recovered sequences from each seed.[Conclusion] Seeds of Palmae plants colonize diverse bacterial endophytes, whose population compositions were different among the tested seeds. The bacterial endophyte communities of tested Palmae seeds consisted of many human-associated bacterial genera, and some potential functions related to human diseases were also included in the predicted KO terms of the seeds bacterial endophytes communities. Each tested seed also colonized some bacterial genera with beneficial function properties, being worth for further study.

    参考文献
    [1] Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes:genera, vertical transmission and interaction with plants. Environmental Microbiology Reports, 2015, 7(1):40-50.
    [2] Torres-Cortés G, Bonneau S, Bouchez O, Genthon C, Briand M, Jacques MA, Barret M. Functional microbial features driving community assembly during seed germination and emergence. Frontiers in Plant Science, 2018, 9:24, doi:10.3389/fpls.2018.00902.
    [3] Pitzschke A. Developmental peculiarities and seed-borne endophytes in Quinoa:omnipresent, robust Bacilli contribute to plant fitness. Frontiers in Microbiology, 2016, 7:2, doi:10.3389/fmicb.2016.00002.
    [4] Cope-Selby N, Cookson A, Squance M, Donnison I, Flavell R, Farrar K. Endophytic bacteria in Miscanthus seed:implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy, 2017, 9(1):57-77.
    [5] Rybakova D, Mancinelli R, Wikström M, Birch-Jensen AF, Postma J, Ehlers RU, Goertz S, Berg G. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome, 2017, 5:104, doi:10.1186/s40168-017-0310-6.
    [6] Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa TM. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiology, 2018, 17:209, doi:10.1186/s12866-017-1117-0.
    [7] Jiang XY, Gao JS, Xu FH, Cao YH, Tang X, Zhang XX. Diversity of endophytic bacteria in rice seeds and their secretion of indole acetic acid. Acta Microbiologica Sinica, 2013, 53(3):269-275. (in Chinese)姜晓宇, 高菊生, 徐凤花, 曹艳花, 唐雪, 张晓霞. 水稻种子内生细菌多样性及其分泌植物生长素能力的测定. 微生物学报, 2013, 53(3):269-275.
    [8] Chen HM, Wu HX, Yan B, Zhao HG, Liu FH, Zhang HH, Sheng Q, Miao F, Lia ZG. Core microbiome of medicinal plant Salvia miltiorrhiza seed:A rich reservoir of beneficial microbes for secondary metabolism? International Journal of Molecular Sciences, 2018, 19(3):672, doi:10.3390/ijms19030672.
    [9] Truyens S, Weyens N, Cuypers A, Vangronsveld J. Changes in the population of seed bacteria of transgenerationally Cd-exposed Arabidopsis thaliana. Plant Biology, 2013, 15(6):971-981.
    [10] Liu Y, Li H, Li JX, Cao YH, Yao S, Bai FR, Tan WQ, Cheng C. Investigation on diversity of endophytic bacterial community in Xisha wild Noni (Morinda citrifolia L.) Seed. Biotechnology Bulletin, 2013, (10):142-147. (in Chinese)刘洋, 李辉, 李金霞, 曹艳花, 姚粟, 白飞荣, 谭望桥, 程池. 西沙野生诺尼种子内生细菌群落多样性的初步研究. 生物技术通报, 2013, (10):142-147.
    [11] Cankar K, Kraigher H, Ravnikar M, Rupnik M. Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiology Letters, 2005, 244(2):341-345.
    [12] Vaughan MJ, Mitchell T, McSpadden Gardener BB. What's inside that seed we brew? A new approach to mining the coffee microbiome. Applied and Environmental Microbiology, 2015, 81(19):6518-6527.
    [13] Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araújo WL. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiology Letters, 2008, 287(1):8-14.
    [14] Lin YR. On the systematics, evolution, floristics and economic uses of Palmae and its sister family, Calamaceae. Bulletin of Botanical Research, 2002, 22(3):341-347. (in Chinese)林有润. 略论棕榈科与新分出的省藤科的系统分类、演化、区系地理及主要的经济用途. 植物研究, 2002, 22(3):341-347.
    [15] Liu HS. Significance, tactics and methods of conservation of Palmae diversity. Journal of Yunnan Agricultural University (Natural Science), 2008, 22(S1):227-230. (in Chinese) 刘海桑. 棕桐科多样性保育之意义与对策. 云南农业大学学报(自然科学版), 2008, 22(S1):227-230.
    [16] Barfod AS, Balhara M, Dransfield J, Balslev H. SE Asian palms for agroforestry and home gardens. Forests, 2015, 6(12):4607-4616.
    [17] Litchfield C. Taxonomic patterns in the fat content, fatty acid composition, and triglyceride composition of Palmae seeds. Chemistry and Physics of Lipids, 1970, 4(1):96-103.
    [18] Liu L, Xiong CJ, Zhu YL, Zhou HW, Ma SD. The separation and anticancer activity of active monomers from sabal palm seeds. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2015, 42(6):78-83. (in Chinese)柳雷, 熊常健, 朱岳麟, 周洪文, 马胜东. 蒲葵籽活性单体的分离及其抗癌活性研究. 北京化工大学学报(自然科学版), 2015, 42(6):78-83.
    [19] Mohamed RMA, Fageer ASM, Eltayeb MM, Ahmed IAM. Chemical composition, antioxidant capacity, and mineral extractability of Sudanese date palm (Phoenix dactylifera L.) fruits. Food Science & Nutrition, 2014, 2(5):478-489.
    [20] Singab AN, El-Taher EMM, Elgindi MR, El Said Kassem M. Phoenix roebelenii O'Brien DNA profiling, bioactive constituents, antioxidant and hepatoprotective activities. Asian Pacific Journal of Tropical Disease, 2015, 5(7):552-558.
    [21] Joshi M, Gaonkar K, Mangoankar S, Satarkar S. Pharmacological investigation of Areca catechu extracts for evaluation of learning, memory and behavior in rats. International Current Pharmaceutical Journal, 2012, 1(6):128-132.
    [22] Jia CY. Study on genetic diversity of native Arenga engleri Becc. populations in China. Master Dissertation of Xiamen University, 2009. (in Chinese) 贾春媛. 中国原生香棕(Arenga engleri Becc.)种群的遗传多样性研究. 厦门大学硕士学位论文, 2009.
    [23] Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, Hingamp P, Ogata H, de Vargas C, Lima-Mendez G, Raes J, Poulain J, Jaillon O, Wincker P, Kandels-Lewis S, Karsenti E, Bork P, Acinas SG. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environmental Microbiology, 2014, 16(9):2659-2671.
    [24] Tang AJ, Long CL, Dao ZL, Song SQ, Tian MH. Studies on germination characteristics and storage behavior of Trachycarpus fortunei seeds. Acta Botanica Yunnanica, 2005, 27(6):657-662. (in Chinese)唐安军, 龙春林, 刀志灵, 宋松泉, 田美华. 棕榈种子萌发特性及其贮藏行为的研究. 云南植物研究, 2005, 27(6):657-662.
    [25] Claesson MJ, O'Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O'Toole PW. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One, 2009, 4(8):e6669, doi:10.1371/journal.pone.0006669.
    [26] Tremblay J, Singh K, Fern A, Kirton ES, He SM, Woyke T, Lee J, Chen F, Dangl JL, Tringe SG. Primer and platform effects on 16S rRNA tag sequencing. Frontiers in Microbiology, 2015, 6:771, doi:10.3389/fmicb.2015.00771.
    [27] Starling S. Bacterial evolution:the origins of pathogenic enterococci. Nature Reviews Microbiology, 2017, 15(7):382-383, doi:10.1038/nrmicro.2017.65.
    [28] Liu GH, Liu B, Wang JP, Che JM, Zhu YJ, Ge CB, Chen Z. Advances in taxonomy and application of Bacillus. Microbiology China, 2017, 44(4):949-958. (in Chinese)刘国红, 刘波, 王阶平, 车建美, 朱育菁, 葛慈斌, 陈峥. 芽胞杆菌分类与应用研究进展. 微生物学通报, 2017, 44(4):949-958.
    [29] Sun MW, Ou JH, Li WJ, Lu CH. Quinoline and naphthalene derivatives from Saccharopolyspora sp. YIM M13568. The Journal of Antibiotics, 2017, 70(3):320-322, doi:10.1038/ja.2016.142.
    [30] Chauhan AK, Ahmad A, Singh SP, Kumar A. Biodesulfurization of benzonaphthothiophene by an isolated Gordonia sp. ⅡTR100. International Biodeterioration & Biodegradation, 2015, 104:105-111.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘媛,渠露露,叶美迪,黄曹生,朱月丹,王俏然,李淑彬. 棕榈科植物种子内生细菌群落多样性的高通量测序分析[J]. 微生物学报, 2019, 59(3): 554-565

复制
分享
文章指标
  • 点击次数:1309
  • 下载次数: 1752
  • HTML阅读次数: 2072
  • 引用次数: 0
历史
  • 收稿日期:2018-05-09
  • 最后修改日期:2018-08-18
  • 在线发布日期: 2019-03-01
文章二维码