微生物介导反刍动物瘤胃氨生成及其对瘤胃功能的影响
作者:
基金项目:

国家自然科学基金(31402101);中央高校基本科研业务费(KYZ201856)


Microbe-mediated ruminal ammonia production in ruminants and its impacts on rumen function
Author:
  • Yixuan Xu

    Yixuan Xu

    Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Zhipeng Li

    Zhipeng Li

    Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Junshi Shen

    Junshi Shen

    Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Weiyun Zhu

    Weiyun Zhu

    Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    反刍动物瘤胃中栖息着丰富多样的微生物,其在瘤胃内氨生成过程中发挥了重要的作用。微生物介导的氨基酸脱氨基作用和非蛋白氮水解作用是瘤胃内氨生成的主要途径。微生物介导了瘤胃内氨的生成,同时瘤胃内产生的氨也会反馈影响微生物菌群结构及瘤胃上皮功能,进而影响瘤胃发酵及宿主健康。本文主要综述了瘤胃微生物在介导氨生成中的作用和氨对瘤胃消化及瘤胃上皮功能的影响,以期对后续研究有所启发。

    Abstract:

    The rumen is inhabited by a multitude of microorganisms that play an important role in the production of ammonia. Microbe-mediated amino acid deamination and non-protein nitrogen hydrolysis are the main pathways for ruminal ammonia production. Ammonia produced by rumen microorganisms acts in a feedback loop to affect the structure of microbial flora and the function of ruminal epithelium, thus affecting the ruminal fermentation and host health. This review summarizes the production of ammonia and the influence of ammonia on digestion and epithelial function in rumen, aiming to provide a reference to the follow-up related research.

    参考文献
    [1] Patra AK, Aschenbach JR. Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism:a review. Journal of Advanced Research, 2018, 13:39-50, doi:10.1016/j.jare.2018.02.005.
    [2] Jin D, Zhao SG, Zheng N, Beckers Y, Wang JQ. Urea metabolism and regulation by rumen bacterial urease in ruminants-a review. Annals of Animal Science, 2017, 18(2):303-318, doi:10.1515/aoas-2017-0028.
    [3] Ceconi I, Ruiz-Moreno MJ, Dilorenzo N, DiCostanzo A, Crawford GI. Effect of urea inclusion in diets containing corn dried distillers grains on feedlot cattle performance, carcass characteristics, ruminal fermentation, total tract digestibility, and purine derivatives-to-creatinine index. Journal of Animal Science, 2015, 93(1):357-369.
    [4] de Vladar HP. Amino acid fermentation at the origin of the genetic code. Biology Direct, 2012, 7(1):6, doi:10.1186/1745-6150-7-6.
    [5] Shen JS, Mao SY, Zhu WY. Ruminal hyper ammonia producing bacteria in ruminants:community structure, function and its manipulation. Chinese Journal of Animal Nutrition, 2015, 27(8):2323-2327. (in Chinese)申军士, 毛胜勇, 朱伟云. 反刍动物瘤胃高效产氨菌菌群结构、功能及其调控. 动物营养学报, 2015, 27(8):2323-2327.
    [6] Russell JB, Strobel HJ, Chen GJ. Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Applied and Environmental Microbiology, 1988, 54(4):872-877.
    [7] Paster BJ, Russell JB, Yang CMJ, Chow JM, Woese CR, Tanner R. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov.. International Journal of Systematic Bacteriology, 1993, 43(1):107-110.
    [8] Attwood GT, Klieve AV, Ouwerkerk D, Patel BKC. Ammonia-hyperproducing bacteria from New Zealand ruminants. Applied and Environmental Microbiology, 1998, 64(5):1796-1804.
    [9] McSweeney CS, Palmer B, Bunch R, Krause DO. Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. Applied and Environmental Microbiology, 1999, 65(7):3075-3083.
    [10] Richardson AJ, McKain N, Wallace RJ. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids. BMC Microbiology, 2013, 13(1):6.
    [11] Bento CBP, de Azevedo AC, Detmann E, Mantovani HC. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia-producing bacteria from Nellore steers fed tropical forages and supplemented with casein. BMC Microbiology, 2015, 15(1):28.
    [12] Shen JS, Yu ZT, Zhu WY. Insights into the populations of proteolytic and amino acid-fermenting bacteria from microbiota analysis using in vitro enrichment cultures. Current Microbiology, 2018, 75(11):1543-1550, doi:10.1007/s00284-018-1558-1.
    [13] Prakadan SM, Shalek AK, Weitz DA. Scaling by shrinking:empowering single-cell ‘omics’ with microfluidic devices. Nature Reviews Genetics, 2017, 18(6):345-361.
    [14] Newbold CJ, de la Fuente G, Belanche A, Ramos-Morales E, McEwan NR. The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 2015, 6:1313.
    [15] Belanche A, de la Fuente G, Moorby JM, Newbold CJ. Bacterial protein degradation by different rumen protozoal groups. Journal of Animal Science, 2012, 90(12):4495-4504.
    [16] Belanche A, de la Fuente G, Newbold CJ. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. FEMS Microbiology Ecology, 2015, 91(3):fiu026.
    [17] Qin YJ, Cabral JMS. Review properties and applications of urease. Biocatalysis and Biotransformation, 2002, 20(1):1-14, https://doi.org/10.1080/10242420210154.
    [18] Kakimoto S, Okazaki K, Sakane T, Imai K, Sumino Y, Akiyama SI, Nakao Y. Isolation and taxonomic characterization of urease-producing bacteria. Agricultural and Biological Chemistry, 1989, 53(4):1111-1117.
    [19] Jin D, Zhao SG, Wang PP, Zheng N, Bu DP, Beckers Y, Wang JQ. Insights into abundant rumen ureolytic bacterial community using rumen simulation system. Frontiers in Microbiology, 2016, 7:1006, https://doi.org/10.3389/fmicb.2016.01006.
    [20] Jin D, Zhao SG, Zheng N, Bu DP, Beckers Y, Denman SE, McSweeney CS, Wang JQ. Differences in ureolytic bacterial composition between the rumen digesta and rumen wall based on ureC gene classification. Frontiers in Microbiology, 2017, 8:385.
    [21] Zhao SG, Wang JQ, Zheng N, Bu DP, Sun P, Yu ZT. Reducing microbial ureolytic activity in the rumen by immunization against urease therein. BMC Veterinary Research, 2015, 11(1):94, https://doi.org/10.1186/s12917-015-0409-6.
    [22] Wallace RJ, Cheng KJ, Dinsdale D, Ørskov ER. An independent microbial flora of the epithelium and its role in the ecomicrobiology of the rumen. Nature, 1979, 279(5712):424-426.
    [23] Wanapat M, Phesatcha K, Kang S. Rumen adaptation of 湳?摡業数琠???浦敡牬楯捥慳渠??潵畢牡湬慵汳?潢晵?偡桬祩獳椩漠汢潹朠票??慨猠瑬牥潶楥湬琠敯獦琠極湲慥污?慳湵摰??楥癭敥牮?偡桴祩獯楮漠汷潨来祮???つㄠは???????????ぷ?ぢ???つ????扴爮?孔??嵰??污慬挠桁楮敩牭?????慡牬楴潨琠瑡楮?????畤湵散慴畩????′吰漱洶??名????????昵昭攱挱琴猰?漼晢?愾浛椲渴潝?慁捭楰摡?摯敮爠楔瘬攠摗?汮畡浰楡湴愠汍?洠敋瑡慮执漠汓椮琠敒獵?潥湮?瑭桥整?换潯汬潩湳業挠?敦瀠楳瑷桡敭汰椠畢浵?慦湡摬?灥桳礠獦楥潤瀠慲瑩档潥氠潳杴楲捡慷氠?捵潰湰獬敥煭略敮湴捥敤猠???浨椠湣潡??捡楶摡猠????ち??????????????????扁牮?孭??崠??楡湬?????噤椠獐敲歯?坵????潮氬漠渲‰洱甶挬漠猴愸氨?挩攺氷氷?搭愷洸愴朮攼?扲社?愲洵浝漠湐楯慬?楯湲?牣慨琠獓??呗桡敮??潡畴爠湍愮氠?潭晰?乯當瑩牮楧琠楴潨湥????????ㄠ???????????????批爠?孲??崠??畤?????奩慵湭朠?她塤???畩潤?娠???畲慵湭?????婯桬畯?坹夬??呩档敲?换潩污潬渠楰捲?浴楥捩牮漠扳楹潮浴敨?慳湩摳?敩灮椠瑢桥敥汦椠慣污?瑴牬慥渮猠捊牯極灲瑮潡浬攠?慦爠敁?慩汭瑡敬爠敐摨?楳湩?牬慯瑧獹?晡敮摤?慁?桩業条桬?灎牵潴瑲敩楴湩?摮椬攠琲‰挱漵洬瀠愹爹攨搳?眺椴琴根?愴‵渶漮爼浢慲氾?瀲父潝琠敐楡湴?摡椠敁瑋??呕桲敥??潁畭牭湯慮汩?漠晭?乴畡瑢牯楬瑩楳潭渠??㈠ぴ????????????????????批爠?孮??嵵??畮条桮整獳?刯???畩特瑡栠??????据?楨氠汒椬朠態湡?噲???捎?氠祒湵湭????剩潣睲汯慢湩摯?????晆晲敯捭琠?潶景?捵潴汩潯湮椠捴?戠慒捥瑶敯牬極慴汩?浮攮琠慎扥潷氠楄瑥敬獨?漺湓??慩据潧???挠攲氰氱‵瀺愳爲愹挭攳水氱甮氼慢牲 ̄灛攲爷浝攠態扬楥汶楥瑮票?楳湥?瘠楆琬爠潐??乲畩琠牒楍琬椠潋湬?慥湦摩??慨渠捍敔爬???どち????ち????水????????戭牚?孢??嵩?呂獕甬樠楚楥?????慑眮愠湃潨?卮??味猠畩橮椠?卩???甭獡慤浨潥瑲潥?????慤洠慦摬慵?呤??即慳瑯潣?乡???攠捭桩慣湲楯獢浩?潬映?杯慭獭瑵牮楩捴?浥畳挠潡獮慤氠?摥慲浭慥杮整?楴湩摯畮挠数摲?扦祩?慥浳洠潩湮椠慴???慲獵瑭牥潮攠湯瑦攠牣潡汴潴杬祥?????????び㈠?????????ㄠ?????批爠?孵??嵩??戠摡潮畤渠????卥瑮畴浲灡晴晥????創慮扴戮愠湆楅?????慣牲瑯敢湩獯?????潅摣畯汬慯瑧楹漬渠′漰昱?甬爠改愳?琹爩愺湦獩灸漱爰琰?愠捤牯潩猺猱‰献栱攰改瀳?牦略浭敳湥?支灦楩瑸栱攰氰椮甼浢?椾湛′瘸楝琠牗潡?执礠?卐????慡湯搠??伬?獎畡扮????猠畊扩????洠敗牡楮捧愠湊??漠畉牮湦慬汵?潮晣?倠桯祦猠楨潹汤潲杯祬?剳敩杳甠汲慡瑴潥爠祯???湲瑥敡朠牯慮琠楲癵敭?慮湡摬??潡浣灴慥牲慩瑡楬瘠敤?偶桥祲獳楩潴汹漠杬祥?????の????????????ど???ち???扲物?嬠??嵵??畡?婣奥???甠楶?????夠慐潥????夠愲渰?????愺牥琵攴渷猵?????猺挱栰攮渷户愱挷栯??剥??匮栵攴渷‵娮???匾桛漲爹瑝?捚桨慯極渠?晍愬琠瑍祥?慧挠楑摘猬?慌湩搠?慌挬椠摊楩捡?灧??甬瀠牗敵朠畈氮愠瑅敦?啥呣?????偵割????慵湰摰??偭剥??楥湤?牤畩浥整湳?敯灮椠瑴桨敥氠楲慵汭?据敡汬氠獢?潣晴?杲潩慡瑬猠???洠敡牲楣捨慡湥??漠畣牯湭慭汵?潩晴?倠档祯獭楰潯汳潩杴祩?剮攠杯畦氠慦瑩潮物祳???湧琠敢杵牬慬瑳椮瘠敁?慰湬摩??漠浍灩慣牲慯瑢楩癯敬?偧桹礠獡楮潤氠潂杩祯???と?????べ?????刷水???刱㈨????戶爲?嬵??崲??戮搼潢畲渾????圠潙污普?????牙湡摮琠?????慥牮琠救湍猬?????晊晊攬挠瑗?潮晧?慗浗洬漠湚楨慡?潧渠?乊愬?獚畨灯????猬甠灌??瑧爠慒湊猬瀠潄物瑮?愠捌牍漬猠獈?楮猠潊氬愠瑌敩搠?牐甬洠救湩?攠灑椮琠桅敦汦楥畣浴?潯晦?獳桬敯敷瀭?楥獬?摡楳敥琠?摲敥灡攠湯摮攠湴瑨???牯業瑰楯獳桩??潯畮爠湯慦氠?潵晭?乮畡瑬爠楢瑡楣潴湥????ち????ふ?????????????扥牳?孩??嵹??甮猠捁桮敩牭??匠??卥捤栠牓??????搠敡牮?????牨敮癯敬獯?????田戱攸爬?????椱攸琭愲爷礮?湢楲琾牛漳朱敝渠?牮敤摲畩捡瑭楩潨湡?敡渠桍愬渠捄敡獶?畬牡攠慁?琬爠慅湫獬灯潵爭瑌?慷捳牯潮猠獍?朠潐慥瑴?牴甠济攬渠?敥灬楰瑡桬攠汓椬甠流???潫甠牆測愠求?潡晩??湁椬洠慄汥?却捥楩敬渠捃攬???ねㄦ〣?″??????????と???????扃牯?孯?ㄠ嵬?卭瑩敮睡慬爠瑣??却??却洠楡瑮桤??偰??啨牥敬慩?湬椠瑣牥潬杬攠湭?獲慰汨癯慬杯敧?洠敡捲桥愠湭楡獲浫獥?慬湹搠?瑯桤敩楦物?牤攠汩敮瘠慲湡捴敳?瑦潥?爠畷浩楴湨愠湡琠獨??湨漭湰?牯畴浥楩渀愀渀琀猀?愀渀搀?洀愀渀??一甀琀爀椀琀椀漀渀?刀攀猀攀愀爀挀栀?刀攀瘀椀攀眀猀???  ???????????????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐诣轩,李志鹏,申军士,朱伟云. 微生物介导反刍动物瘤胃氨生成及其对瘤胃功能的影响[J]. 微生物学报, 2019, 59(5): 781-788

复制
分享
文章指标
  • 点击次数:1307
  • 下载次数: 2234
  • HTML阅读次数: 4409
  • 引用次数: 0
历史
  • 收稿日期:2018-06-27
  • 最后修改日期:2018-09-20
  • 在线发布日期: 2019-05-05
文章二维码