镉离子污染条件下微生物群落中细菌与藻类的相互作用
作者:
基金项目:

国家自然科学基金(31570098);中国博士后科学基金(2015M582247);湖北省自然科学基金(2017CFB164);中央高校基本科研业务费(CCNU18ZDPY03,CCNU16GD014)


Interactions between bacteria and phytoplankton in microbial communities under cadmium contamination conditions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [背景]水体微生物有着丰富的多样性,不同种类的微生物之间的相互作用对水体生态系统的组成结构与功能具有重要影响。水体内的藻类与某些微生物可以发生多种相互作用,然而人们对逆境条件下的菌藻有益相互作用尚缺乏深入研究。[目的]为了研究镉对水体微生物群落的影响以及镉胁迫下菌藻之间可能的相互作用。[方法]本研究运用了基于16S rRNA基因的高通量测序技术,分析在不同Cd2+条件下微生物群落结构的变化,利用微生物相互作用网络分析菌藻之间可能发生的相互作用。[结果]通过分离培养筛选出了与集胞藻PCC6803互作抗Cd2+的关键细菌Y9菌株。[结论]研究结果表明Y9菌株属于Phyllobacteriaceae科,与微生物群落组成和微生物互作网络的分析结果相符。本研究为探索水体环境中微生物种间相互作用、菌藻互作抗Cd2+的生态效应提供参考依据。

    Abstract:

    [Background] Microorganisms in water are rich in diversity, and various interspecific relationships occur among different microorganisms, which have an important influence on the composition structure and function of water ecosystem. Phytoplankton (microalgae and cyanobacteria) and some microbes in aquatic environment can interact with each other in various formats. However, the beneficial interactions between bacteria and phytoplankton under stress conditions remain unclear.[Objective] Studying the effects of Cd2+ on the microbial community of water samples and possible interactions between bacteria and phytoplankton.[Methods] Based on the high throughput sequencing of 16S rRNA gene, we analyzed the changes of microbial community structure under Cd2+ stress. We used the microbial interaction network to analyze the possible interaction between bacteria and phytoplankton.[Results] By isolation and culture, we found that the strain Y9 could interact with Synechocystis sp. PCC6803 and help the algae to resist the toxicity of Cd2+. [Conclusion] The results showed that strain Y9 belonged to Phyllobacteriaceae family, which was consistent with the results of microbial community composition and microbial interaction network. This study will provide a new scientific basis for exploring the interactions between microorganisms in aquatic environment and the ecological effects of interactions between bacteria and phytoplankton for cadmium resistance.

    参考文献
    [1] Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environmental Microbiology, 2005, 7(6):860-873.
    [2] Desbois AP, Mearns-Spragg A, Smith VJ. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology, 2009, 11(1):45-52.
    [3] De-Bashan LE, Antoun H, Bashan Y. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology, 2008, 44(4):938-947.
    [4] Gärdes A, Iversen MH, Grossart HP, Passow U, Ullrich MS. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. The ISME Journal, 2011, 5(3):436-445.
    [5] Shen H, Niu Y, Xie P, Tao M, Yang X. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshwater Biology, 2011, 56(6):1065-1080.
    [6] Amin SA, Green DH, Gärdes A, Romano A, Trimble L, Carrano CJ. Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton:the role of light. BioMetals, 2012, 25(1):181-192.
    [7] Egan S, James S, Holmström C, Kjelleberg S. Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. FEMS Microbiology Ecology, 2001, 35(1):67-73.
    [8] Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W. Bioconversion of red seaweed galactans:a focus on bacterial agarases and carrageenases. Applied Microbiology and Biotechnology, 2006, 71(1):23-33.
    [9] Liu HL, Zhou YY, Xiao WJ, Ji L, Cao XY, Song CL. Shifting nutrient-mediated interactions between algae and bacteria in a microcosm:evidence from alkaline phosphatase assay. Microbiological Research, 2012, 167(5):292-298.
    [10] Gupta V, Kumar M, Brahmbhatt H, Reddy CRK, Seth A, Jha B. Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method. Plant Physiology and Biochemistry, 2011, 49(11):1259-1263.
    [11] Medina M, Neis U. Symbiotic algal bacterial wastewater treatment:effect of food to microorganism ratio and hydraulic retention time on the process performance. Water Science and Technology, 2007, 55(11):165-171.
    [12] Sansone U, Belli M, Riccardi M, Alonzi A, Jeran Z, Radojko J, Smodis B, Montanari M, Cavolo F. Adhesion of water-borne particulates on freshwater biota. The Science of Total Environment, 1998, 219(1):21-28.
    [13] Xie B, Bishop S, Stessman D, Wright D, Spalding MH, Halverson LJ. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. The ISME Journal. 2013, 7(8):1544-1555.
    [14] Dittami SM, Duboscq-Bidot L, Perennou M, Gobet A, Corre E. Host-microbe interactions as a drive of acclimation to salinity gradients in brown algal cultures. The ISME Journal, 2016, 10(1):51-63.
    [15] Jiang XP, Hu XH. Studies in microbiome big data. Mathematical Modeling and Its Applications, 2015, 4(3):6-18. (in Chinese)蒋兴鹏, 胡小华. 微生物组学的大数据研究. 数学建模及其应用, 2015, 4(3):6-18.
    引证文献
引用本文

石遵计,曹政,胡科鑫,彭鑫碧,朱一帆,谢波. 镉离子污染条件下微生物群落中细菌与藻类的相互作用[J]. 微生物学报, 2019, 59(6): 1156-1163

复制
相关视频

分享
文章指标
  • 点击次数:1059
  • 下载次数: 1580
  • HTML阅读次数: 2229
  • 引用次数: 0
历史
  • 收稿日期:2018-07-10
  • 最后修改日期:2018-08-02
  • 在线发布日期: 2019-05-29
文章二维码