深海极端微生物菌群及代谢产物多样性的研究进展
作者:
基金项目:

“中国蓝色药库开发计划”关键技术预研项目(2016ASKJ08-03);青岛市博士后应用研究项目


Diversity of extremophiles and metabolites in the deep-sea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [78]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    海洋覆盖了地球表面积的四分之三,它不仅是生命的起源,而且还孕育了各种极端微生物。它们存在于海洋极端环境中,如热液喷口、热泉、咸湖和深海层等,由于生境太过恶劣,一度被认为是生命的禁区。随着人类对深海极端环境微生物研究的不断深入,已经探索到那里具有丰富的菌群资源和具有潜在价值的天然生物活性产物。这些极端微生物能够适应极高温、极低温、高压、高盐、高放射性和极度酸碱性等极端环境,具有特殊的生物多样性、遗传背景和代谢途径,能够产生各种具有特殊功能的酶类及其他活性物质,展现出巨大的研究价值和应用潜力。研究海洋极端微生物对探索生物多样性、新资源开发利用及对地球生物学研究等都具有重要意义。

    Abstract:

    Nowadays, studies are increasingly emerging on the extremophiles inhabiting the extreme environments on earth. Covering 3/4 of the Earth's surface area, the ocean nurtures a variety of extremophiles found in extreme marine environments such as hydrothermal vents, hot springs, saline lakes and deep sea. These extremophiles can adapt to extreme high temperature, extreme low temperature, high pressure, high salinity, high radioactivity and extreme acidity and alkalinity. Their special biodiversity, together with their genetic background and unique metabolic pathways have evoked vast interests of scientist and industries. Research on extremophiles from variety of submarine geological landforms will be helpful to gain the knowledge on the origin of life, biodiversity, discovery and utilization of new natural resources, and geobiology. On the other hand, application orientated studies on panel of enzymes and variety of other unique active substances with extremophiles, have already been attempted with their potency well revealed. This review covers the latest progress on the studies covering the diversity of extremophiles, the development and utilization of new resources, research methods and techniques, respectively.

    参考文献
    [1] Morita RY, Zobell CE. Occurrence of bacteria in pelagic sediments collected during the mid-Pacific expedition. Deep Sea Research, 1955, 3(1):66-73.
    [2] Antranikian G, Vorgias CE, Bertoldo C. Extreme environments as a resource for microorganisms and novel biocatalysts. Advances in Biochemical Engineering-Biotechnology, 2005, 96:219-262.
    [3] Wang JS, Wang YB, Li Q. Potential relationship between extremophiles and hydrocarbon resources in marine extreme environment. Earth Science-Journal of China University of Geosciences, 2007, 32(6):781-788. (in Chinese)王家生, 王永标, 李清. 海洋极端环境微生物活动与油气资源关系. 地球科学-中国地质大学学报, 2007, 32(6):781-788.
    [4] Paull CK, Schlining B, Ussler WI, Paduan JB, Caress D, Greene HG. Distribution of chemosynthetic biological communities in Monterey Bay, California. Geology, 2005, 33(2):85-88.
    [5] Gerwick W, Moore B. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chemistry & Biology, 2012, 19:85-98.
    [6] Giddings LA, Newman DJ. Bioactive compounds from marine extremophiles. Print ISBN:978-3-319-14360-6. SpringerBriefs in Microbiology. Springer, Cham. 2015.
    [7] Sun QL. A study on the environmental and symbiont microbial communities in Okinawa Trough hydrothermal vent fields. University of Chinese Academy of Sciences, Academic dissertation, 2016. (in Chinese)孙庆磊. 冲绳海槽热液区环境微生物及共生微生物研究. 中国科学院研究生院(海洋研究所)学位论文, 2016.
    [8] Geslin C, Romancer ML, Erauso G, Gaillard M, Perrot G, Prieur D. PAV1, the First virus-like particle isolated from a hyperthermophilic euryarchaeote, "Pyrococcus abyssi". Journal of Bacteriology, 2003, 185(13):3888-3894.
    [9] Lossouarn J, Dupont S, Gorlas A, Merciera C, Bienvenua N, Marguetb E, Forterrec P, Geslina C. An abyssal mobilome:Viruses, plasmids and vesicles from deep-sea hydrothermal vents. Research in Microbiology, 2015, 166(10):742-752.
    [10] Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G. Marine culturable yeasts in deep-sea hydrothermal vents:species richness and association with fauna. FEMS Microbiology Ecology, 2010, 73(1):121-133.
    [11] Burgaud G, Le CT, Arzur D, Vandenkoornhuyse P, Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environmental Microbiology, 2009, 11(6):1588-1600.
    [12] Ding C, Wu X, Auckloo BN, Chen CTA, Wu B. An unusual stress metabolite from a hydrothermal vent fungus Aspergillus sp. WU 243 Induced by Cobalt. Molecules, 2016, 21(1):105.
    [13] Perezrodriguez I, Rawls M, Coykendall DK, Foustoukos DI. Deferrisoma paleochoriense sp. nov. a thermophilic, iron(Ⅲ)-reducing bacterium from a shallow-water hydrothermal vent in the Mediterranean Sea. International Journal of Systematic & Evolutionary Microbiology, 2016, 66:830-836.
    [14] Slobodkina GB, Panteleeva AN, Beskorovaynaya DA, Bonch-Osmolovskaya EA, Slobodkin AI. Thermostilla marina gen. nov. sp. nov. a novel thermophilic facultatively anaerobic planctomycete isolated from a shallow submarine hydrothermal vent. International Journal of Systematic & Evolutionary Microbiology, 2016, 66:633-638.
    [15] Raguénès G, Christen R, Guezennec J, Pignet P, Barbier G. Vibrio diabolicus sp. nov. a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. International Journal of Systematic Bacteriology, 1997, 47(4):989-995.
    [16] Alain K, Marteinsson VT, Miroshnichenko ML, Bonch-Osmolovskaya EA, Birrien JL. Marinitoga piezophila sp. nov. a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. International Journal of Systematic & Evolutionary Microbiology, 2002, 52(4):1331-1339.
    [17] Nercessian O, Fouquet Y, Pierre C, Prieur D, Jeanthon C. Diversity of bacteria and archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environmental Microbiology, 2005, 7(5):698-714.
    [18] Parkes RJ, Cragg BA, Bale SJ, Getlifff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 1994, 371:410-413.
    [19] Burggraf S, Jannasch HW, Nicolaus B, Stetter KO. Archaeoglobus profundus sp. nov. represents a new species within the sulfate-reducing archaebacteria. Systematic and Applied Microbiology, 1990, 13(1):24-28.
    [20] Huber R, Kurr M, Jannasch HW, Stetter KO. A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110℃. Nature, 1898, 342:833-834.
    [21] Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS. Methanococcus jannaschii sp. nov. an extremely thermophilic methanogen from a submarine hydrothermal vent. Archives of Microbiology, 1983, 136(4):254-261.
    [22] Rueter P, Rabus R, Wilkest H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 1994, 372:455-458.
    [23] Goetz FE, Jannasch HW. Aromatic hydrocarbon-degrading bacteria in the petroleum-rich sediments of the Guaymas basin hydrothermal vent site:preference for aromatic carboxylic acids. Geomicrobiology Journal, 1993, 11:1-18.
    [24] Suzuki Y, Inagaki F, Takai K, Nealson KH, Horikoshi K. Microbial diversity in inactive chimney structures from deep-sea hydrothermal systems. Microbial Ecology, 2004, 47(2):186-196.
    [25] Martens CS, Chanton JP, Paull CK. Biogenic methane from abyssal brine seeps at the base of the Florida Escarpment. Geology, 1991, 19:851-854.
    [26] Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH. Bacteria and archaea physically associated with Gulf of Mexico gas hydrates. Applied and Environmental Microbiology, 2001, 67:5143-5153.
    [27] Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF. Methane-consuming archaebacteria in marine sediments. Nature, 1999, 398:802-805.
    [28] Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000, 407:623-626.
    [29] Girguis P, Orphan V, Hallam S, Delong E. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Applied and Environmental Microbiology, 2003, 69:5472-5482.
    [30] Orphan VJ, Hinrichs KU, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology, 2001, 67:1922-1934.
    [31] Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF. Methane-consuming archea revealed by directly coupled isotopic and phylogenic analysis. Science, 2001, 293(5529):484-487.
    [32] Orphan VJ, House CH, Hinrichs KU, Mckeegan KD, Delong EF. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7663-7668.
    [33] Teske A, Hinrichs K, Edgcomb V, Gomez AD, Kysela D, Sylva S, Sogin M, Jannasch H. Microbial diversity of hydrothermal sediments in the Guaymas Basin:evidence for anaerobic methanotrophic communities. Applied and Environmental Microbiology, 2002, 68:1994-2007.
    [34] Hallam SJ, Putnam N, Preston CM, Detter JC, Rokshar D, Richardson PM, DeLong EF. Reverse methanogenesis:testing the hypothesis using environmental genomics. Science, 2004, 305:1457-1462.
    [35] Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K, Nunoura T, Nealson KH, Horikoshi K. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Applied and Environmental Microbiology, 2004, 70:7445-7455.
    [36] Takishita K, Tsuchiya M, Reimer JD, Maruyama T. Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles, 2006, 10(2):165-169.
    [37] Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep:surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles, 2007, 11(4):563-576.
    [38] Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A. Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2010, 57(21-23):2008-2021.
    [39] Daffonchio D, Bl Microbiology, 2012, 78(5):1589-1592.
    [78] Guibert LM, Loviso CL, Marcos MS, Commendatore MG, Dionisi HM, Lozada M. Alkane biodegradation genes from chronically polluted subantarctic coastal sediments and their shifts in response to oil exposure. Microbial Ecology, 2012, 64(3):605-616.
    [79] Dionisi HM, Lozada M, Olivera NL. Bioprospection of marine microorganisms:potential and challenges for Argentina Bioprospección de microorganismos marinos:potencialidades y desafíos para Argentina. Revista Argentina De Microbiologia, 2012, 44(2):122-132.m Pyrococcus furiosus. Gene, 1991, 108(1):1-6.
    [41] Kim SE. Springer Handbook of Marine Biotechnology, Springer-Verlag Berlin Heidelberg, 2015.
    [42] Egorova K, Antranikian G. Industrial relevance of thermophilic Archaea. Current Opinion in Microbiology, 2005, 8(6):649-655.
    [43] Cornec L, Robineau J, Rolland JL, Dietrich G. Thermostable esterases screened on hyperthermophilic archaeal and bacterial strains isolated from deep-sea hydrothermal vents:Characterization of esterase activity of a hyperthermophilic archaeum, Pyrococcus abyssi. Journal of Marine Biotechnology, 2004, 6(2):104-110.
    [44] Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ. Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochemistry, 2011, 46(6):1257-1263.
    [45] Legin E, Ladrat C, Godfroy A, Barbier G, Duchiron F. Thermostable amylolytic enzymes of thermophilic microorganisms from deep-sea hydrothermal vents. Comptes Rendus de l'Academie des Sciences-Serie Ⅲ-Sciences de la Vie, 1997, 320(11):893-898.
    [46] Yoon SA, Ryu SI, Lee SB, Moon TW. Purification and characterization of branching specificity of a novel extracellular amylolytic enzyme from marine hyperthermophilic Rhodothermus marinus. Journal of Microbiology & Biotechnology, 2008, 18(3):457-464.
    [47] Chien A, Edgar DB, Trela JM. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal of Bacteriology, 1976, 127(3):1550-1557.
    [48] Kobori H, Sullivan CW, Shizuya H. Heat-labile alkaline phosphatase from Antarctic bacteria:Rapid 5' end labelling of nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(21):6691-6695.
    [49] Zhang JW, Zeng RY. Cloning, expression and characterization of the cold active lipase (Lip3) from metagenomic DNA of an Antarctic deep sea sediment. Progress in Biochemistry & Biophysics, 2006, 34(33):1207-1214. (in Chinese)张金伟, 曾润颖. 南极深海沉积物宏基因组DNA中低温脂肪酶基因的克隆、表达及性质分析. 生物化学与生物物理进展, 2006, 34(33):1207-1214.
    [50] Zhang JW, Shu L, Zeng RY. Cloning, expression, and characterization of a cold-adapted lipase gene from an Antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp. 7195. Journal of Microbiology & Biotechnology, 2007, 17(4):604-610.
    [51] Zhang JW, Zeng RY. Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. Marine Biotechnology, 2008, 10(5):612-621.
    [52] Lin XZ, Yang XX, Bian J, Huang XH. Study on low-temperature lipase of psychrophilic bacterium 2-5-10-1 isolated from deep sea of Southern Ocean. Acta Oceanologica Sinica, 2003, 22(4):643-650.
    [53] Trincone A. Marine biocatalysts:enzymatic features and applications. Marine Drugs, 2011, 9(12):478-499.
    [54] Khudary RA, Venkatachalam R, Katzer M, Elleuche S, Antranikian G. A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica:gene cloning, enzyme purification and characterization. Extremophiles, 2010, 14:273-285.
    [55] Davidson BS, Schumacher RW. ChemInform Abstract:Isolation and synthesis of Caprolactins A and B, new Caprolactams from a Marine Bacterium. Cheminform, 1993, 49(47):6569-6574.
    [56] Gustafson K, Roman M, Fenical W. ChemInform abstract:The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. Cheminform, 1990, 21(1):786-798.
    [57] Skropeta D. Deep-sea natural products. Natural Product Reports, 2008, 25(6):1131-1166.
    [58] Thomas DN, Dieckmann GS. Antarctic sea ice-a habitat for extremophiles. Science, 2002, 295(5555):641-644.
    [59] Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada K, Yazawa K, Knauf V, Browse J. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 2001, 293(5528):290-293.
    [60] Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates:biodegradable polymers with a range of applications. Journal of Chemical Technology and Biotechnology, 2007, 82:233-247.
    [61] Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R. Synthesis and production of polyhydroxyalkanoates by halophiles:current potential and future prospects. Applied Microbiology & Biotechnology, 2010, 85(6):1687-1696.
    [62] Gonthier I, MarieNoëlle Rager, Metzger P, Guezennec J, Largeau C. A di-O-dihydrogeranylgeranyl glycerol from Thermococcus S 557, a novel ether lipid, and likely intermediate in the biosynthesis of diethers in Archaea. Tetrahedron Letters, 2001, 42(15):2795-2797.
    [63] Comita PB, Gagosian RB, Pang H, Costello CE. Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii. Journal of Biological Chemistry, 1984, 259(24):15234-15241.
    [64] Kaneshiro SM, Clark DS. Pressure effects on the composition and thermal behavior of lipids from the deep-sea thermophile Methanococcus jannaschii. Journal of Bacteriology, 1995, 177(13):3668-3672.
    [65] Ferrer M, Golyshina O, Beloqui A, Golyshin PN. Mining enzymes from extreme environments. Current Opinion in Microbiology, 2007, 10(3):207-214.
    [66] Pettit RK. Culturability and secondary metabolite diversity of extreme microbes:expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Marine Biotechnology, 2011, 13(1):1-11.
    [67] Joint I, Mühling M, Querellou J. Culturing marine bacteria-an essential prerequisite for biodiscovery. Microbial Biotechnology, 2010, 3(5):564-575.
    [68] Stewart EJ. Growing unculturable bacteria. Journal of Bacteriology, 2012, 194(16):4151-4160.
    [69] Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiology Letters, 2010, 309(1):1-7.
    [70] Singh BK. Exploring microbial diversity for biotechnology:the way forward. Trends in Biotechnology, 2010, 28(3):111-116.
    [71] Simon C, Daniel R. Metagenomic analyses:Past and future trends. Applied and Environmental Microbiology, 2011, 77(4):1153-1161.
    [72] Kennedy J, O'Leary ND, Kiran GS, Morrissey JP, O'Gara F, Selvin J, Dobson ADW. Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. Journal of applied microbiology, 2011, 111(4):787-799.
    [73] Perez-Jimenez JR, Kerkhof LJ. Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB). Applied and Environmental Microbiology, 2005, 71(2):1004-1011.
    [74] Braker G, Ayala-Del-Rio HL, Devol AH, Fesefeldt A, Tiedje JM. Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Applied and Environmental Microbiology, 2001, 67(4):1893-1901.
    [75] Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends in Microbiology, 2011, 19(4):162-173.
    [76] Park SJ, Park BJ, Rhee SK. Comparative analysis of archaeal 16S rRNA andamoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles, 2008, 12(4):605-615.
    [77] Marcos MS, Lozada M, Di Marzio WD, Dionisi HM. Abundance, dynamics, and biogeographic distribution of seven polycyclic aromatic hydrocarbon dioxygenase gene variants in coastal sediments of Patagonia. Applied & Environmenta
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汤伟,张军,李广善,王悦,何增国. 深海极端微生物菌群及代谢产物多样性的研究进展[J]. 微生物学报, 2019, 59(7): 1241-1252

复制
分享
文章指标
  • 点击次数:1659
  • 下载次数: 2273
  • HTML阅读次数: 3578
  • 引用次数: 0
历史
  • 收稿日期:2018-09-06
  • 最后修改日期:2019-01-21
  • 在线发布日期: 2019-07-02
文章二维码