PstS和PstB调控无机磷酸盐转运和介导细菌耐药的机制
作者:
基金项目:

辽宁省教育厅科学研究一般项目(L201683675);辽宁省自然科学基金(201602462)


Regulating inorganic phosphate transport and mediating bacterial resistance by PstS and PstB
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    无机磷酸盐(Pi)在菌体遗传、能量代谢及细胞内的信号传导等生物过程中发挥重要的作用。在细菌中,主要由磷酸盐特殊转运系统(Pst)和磷酸盐转运系统(Pit)来完成对Pi的吸收和利用。其中,Pst是在低磷胁迫下转运Pi的关键系统。近年来的研究表明,Pst系统除在调控Pi的代谢和平衡中发挥重要作用外,还介导细菌耐药、产毒和侵袭等。Pst系统是ABC转运蛋白家族的一种,一般由PstS、PstC、PstA、PstB和PhoU 5个蛋白组成。其中,PstS和PstB蛋白是该系统中的关键蛋白。本文重点对PstS和PstB调控Pi转运和介导细菌耐药的分子机制进行综述,旨在为深入研究该系统与细菌耐药的关系,以及研发以PstS和PstB为靶点的新药提供参考。

    Abstract:

    Inorganic phosphate (Pi) plays an important role in the biological processes such as bacterial heredity, energy metabolism and intracellular signaling. Two major bacterial Pi import systems exist in bacteria, Pst and Pit. The Pst system is highly efficient at transporting Pi, particularly in cells growing under low-Pi concentrations. In recent years, studies have found that in addition to regulating metabolism and balance of Pi, Pst system also mediates drug resistance, toxicity and invasion of bacteria. The Pst system is a member of the ABC transporter family, generally consists of five distinct proteins of PstS, PstC, PstA, PstB and PhoU. Among them, PstS and PstB are key proteins in the Pst system. This article reviews the molecular mechanisms of Pi transport and bacterial resistance of PstS and PstB, and the relationship between Pst system and bacterial resistance as well as PstS/PstB-targeted development to manufacture new drug.

    参考文献
    [1] Tischler AD, Leistikow RL, Ramakrishnan P, Voskuil MI, McKinney JD. Mycobacterium tuberculosis phosphate uptake system component PstA2 is not required for gene regulation or virulence. PLoS One, 2016, 11(8):e0161467.
    [2] Hudek L, Premachandra D, Webster WAJ, Bräu L. Role of phosphate transport system component PstB1 in phosphate internalization by nostoc punctiforme. Applied and Environmental Microbiology, 2016, 82(21):6344-6356.
    [3] Brokaw AM, Eide BJ, Muradian M, Boster JM, Tischler AD. Mycobacterium smegmatis PhoU proteins have overlapping functions in phosphate signaling and are essential. Frontiers in Microbiology, 2017, 8:2523.
    [4] Kortstee GJJ, Appeldoorn KJ, Bonting CFC, van Niel EWJ, van Veen HW. Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal. FEMS Microbiology Reviews, 1994, 15(2/3):137-153.
    [5] Yuan ZC, Zaheer R, Finan TM. Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti. Journal of Bacteriology, 2006, 188(3):1089-1102.
    [6] Yang X, Yue ST, Wu ZH, Fu L, Yu RJ, Yang MY. Identification of the Pst system of phosphate solubilizing bacteria Pseudomonas sp. wj1 and functional analysis of pstS gene. Journal of China Agricultural University, 2018, 23(6):40-48. (in Chinese)杨雪, 岳胜天, 武志海, 付丽, 于人杰, 杨美英. 溶磷菌Pseudomonas sp. wj1的Pst系统鉴定及pstS基因功能分析. 中国农业大学学报, 2018, 23(6):40-48.
    [7] O'May GA, Jacobsen SM, Longwell M, Stoodley P, Mobley HLT, Shirtliff ME. The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology, 2009, 155:1523-1535.
    [8] Neznansky A, Blus-Kadosh I, Yerushalmi G, Banin E, Opatowsky Y. The Pseudomonas aeruginosa phosphate transport protein PstS plays a phosphate-independent role in biofilm formation. The FASEB Journal, 2014, 28(12):5223-5233.
    [9] Lucas RL, Lostroh CP, DiRusso CC, Spector MP, Wanner BL, Lee CA. Multiple factors independently regulatehilA and invasion gene expression in Salmonella enterica serovar typhimurium. Journal of bacteriology, 2000, 182(7):1872-1882.
    [10] Bhatt K, Banerjee SK, Chakraborti PK. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacterium smegmatis. European Journal of Biochemistry, 2000, 267(13):4028-4032.
    [11] Vyas NK, Vyas MN, Quiocho FA. Crystal structure of M. tuberculosis ABC phosphate transport receptor:specificity and charge compensation dominated by ion-dipole interactions. Structure, 2003, 11(7):765-774.
    [12] Chan FY, Torriani A. PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. Journal of Bacteriology, 1996, 178(13):3974-3977.
    [13] ter Beek J, Guskov A, Slotboom DJ. Structural diversity of ABC transporters. Journal of General Physiology, 2014, 143(4):419-435.
    [14] Higgins CF, Linton KJ. The ATP switch model for ABC transporters. Nature Structural & Molecular Biology, 2004, 11(10):918-926.
    [15] Schmees G, Stein A, Hunke S, Landmesser H, Schneider E. Functional consequences of mutations in the conserved ‘signature sequence’ of the ATP-binding-cassette protein Malk. European Journal of Biochemistry, 1999, 266(2):420-430.
    [16] Jones PM, George AM. The ABC transporter structure and mechanism:perspectives on recent research. Cellular and Molecular Life Sciences, 2004, 61(6):682-699.
    [17] Zschiedrich CP, Keidel V, Szurmant H. Molecular mechanisms of two-component signal transduction. Journal of Molecular Biology, 2016, 428(19):3752-3775.
    [18] Pontes MH, Groisman EA. Protein synthesis controls phosphate homeostasis. Genes & Development, 2018, 32(1):79-92.
    [19] Monds RD, Newell PD, Schwartzman JA, O'Toole GA. Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Applied and Environmental Microbiology, 2006, 72(3):1910-1924.
    [20] Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75(5):855-862.
    [21] Luz DE, Nepomuceno RSL, Spira B, Ferreira RCC. The Pst system of Streptococcus mutans is important for phosphate transport and adhesion to abiotic surfaces. Molecular Oral Microbiology, 2012, 27(3):172-181.
    [22] Fischer RJ, Oehmcke S, Meyer U, Mix M, Schwarz K, Fiedler T, Bahl H. Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. Journal of Bacteriology, 2006, 188(15):5469-5478.
    [23] Monds RD, Newell PD, Gross RH, O'Toole GA. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Molecular Microbiology, 2007, 63(3):656-679.
    [24] Sprecher KS, Hug I, Nesper J, Potthoff E, Mahi MA, Sangermani M, Kaever V, Schwede T, Vorholt J, Jenal U. Cohesive properties of the Caulobacter crescentus holdfast adhesin are regulated by a novel c-di-GMP effector protein. mBio, 2017, 8(2):e00294-17.
    [25] Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling:lessons from Pseudomonas aeruginosa and other bacteria. Journal of Biological Chemistry, 2016, 291(24):12547-12555.
    [26] Neznansky A, Opatowsky Y. Expression, purification and crystallization of the phosphate-binding PstS protein from Pseudomonas aeruginosa. Acta Crystallographica. Section F, Structural Biology Communications, 2014, 70:906-910.
    [27] Shah M, Zaborin A, Alverdy JC, Scott K, Zaborina O. Localization of DING proteins on PstS-containing outer-surface appendages of Pseudomonas aeruginosa. FEMS Microbiology Letters, 2014, 352(1):54-61.
    [28] Cox GB, Webb D, Rosenberg H. Specific amino acid residues in both the PstB and PstC proteins are required for phosphate transport by the Escherichia coli Pst system. Journal of Bacteriology, 1989, 171(3):1531-1534.
    [29] Novak R, Cauwels A, Charpentier E, Tuomanen E. Identification of a Streptococcus pneumoniae gene locus encoding proteins of an ABC phosphate transporter and a two-component regulatory system. Journal of Bacteriology, 1999, 181(4):1126-1133.
    [30] Sarin J, Aggarwal S, Chaba R, Varshney GC, Chakraborti PK. B-subunit of phosphate-specific transporter from Mycobacterium tuberculosis is a thermostable ATPase. Journal of Biological Chemistry, 2001, 276(48):44590-44597.
    [31] Surin BP, Rosenberg H, Cox GB. Phosphate-specific transport system of Escherichia coli:nucleotide sequence and gene-polypeptide relationships. Journal of Bacteriology, 1985, 161(1):189-198.
    [32] Wang Q, Song YY, Chi JY, Wang YF, Zhao YL. Study on the mechanism of drug resistance in mono ofloxacin-resistant Mycobacterium tuberculosis. Chinese Journal of Antituberculosis, 2014, 36(5):350-355. (in Chinese)王前, 宋媛媛, 池俊英, 王玉峰, 赵雁林. 单耐氧氟沙星的结核分枝杆菌耐药机制研究. 中国防痨杂志, 2014, 36(5):350-355.
    [33] Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical Microbiology Reviews, 2015, 28(2):337-418.
    [34] Mahmood HY, Jamshidi S, Mark J, Rahman KM. Current advances in developing inhibitors of bacterial multidrug efflux pumps. Current Medicinal Chemistry, 2016, 23(10):1062-1081.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张鹏,王龙,谢明杰. PstS和PstB调控无机磷酸盐转运和介导细菌耐药的机制[J]. 微生物学报, 2019, 59(8): 1429-1436

复制
分享
文章指标
  • 点击次数:1634
  • 下载次数: 1889
  • HTML阅读次数: 4452
  • 引用次数: 0
历史
  • 收稿日期:2018-09-28
  • 最后修改日期:2018-12-15
  • 在线发布日期: 2019-07-31
文章二维码