State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;IMCAS-RCEECAS Joint-Laboratory of Microbial Technology for Environmental Science, Beijing 100101, China 在期刊界中查找 在百度中查找 在本站中查找
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;IMCAS-RCEECAS Joint-Laboratory of Microbial Technology for Environmental Science, Beijing 100101, China 在期刊界中查找 在百度中查找 在本站中查找
Microorganisms-involved oxidation processes of reduced inorganic sulfur compounds (RISCs) are significant components of sulfur geochemical cycle, and could also be applied in biomining industry and acid mine water treatment. Thermophilic archaea are a special group of microorganisms in high temperature environments. They participate in a variety of dissimilatory sulfur oxidation pathways, involving many redox enzymes and sulfur transporter proteins. In this review, the species of thermophilic archaea involved in the metabolic processes of dissimilatory sulfur oxidation, and the sulfur oxidation processes they participate in will be systematically introduced in combination with our research work.
[1] Canfield DE, Stewart FJ, Thamdrup B, de Brabandere L, Dalsgaard T, Delong EF, Revsbech NP, Ulloa OA. Cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 2010, 330(6009):1375-1378.
[2] Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, Tortell PD, Hallam SJ. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science, 2009, 326(5952):578-582.
[3] Hawley AK, Brewer HM, Norbeck AD, Paša-Tolić L, Hallam SJ. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31):11395-11400.
[4] Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Current Opinion in Microbiology, 2005, 8(3):253-259.
[5] Kawano Y, Suzuki K, Ohtsu I. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms. Applied Microbiology and Biotechnology, 2018, 102(19):8203-8211.
[6] Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain:the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(11):5088-5090.
[7] Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea:new perspectives on their diversity, evolution and ecology. The ISME Journal, 2017, 11(11):2407-2425.
[8] Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM. Thermophiles in the genomic era:biodiversity, science, and applications. Biotechnology Advances, 2015, 33(6):633-647.
[9] Golyshina OV, Yakimov MM, Lunsdorf H, Ferrer M, Nimtz M, Timmis KN, Wray V, Tindall BJ, Golyshin PN. Acidiplasma aeolicum gen. nov., sp. nov., a Euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(11):2815-2823.
[10] Segerer A, Neuner A, Kristjansson JK, Stetter KO. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.:facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. International Journal of Systematic and Evolutionary Microbiology, 1986, 36(4):559-564.
[11] Kletzin A. Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur:purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. Journal of Bacteriology, 1989, 171(3):1638-1643.
[12] Yoshida N, Nakasato M, Ohmura N, Ando A, Saiki H, Ishii M, Igarashi Y. Acidianus manzaensis sp. nov., a novel thermoacidophilic Archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Current Microbiology, 2006, 53(5):406-411.
[13] Plumb JJ, Haddad CM, Gibson JAE, Franzmann PD. Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. International Journal of Systematic and Evolutionary Microbiology, 2007, 57:1418-1423.
[14] He ZG, Zhong HF, Li YQ. Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Current Microbiology, 2004, 48(2):159-163.
[15] Tsuboi K, Sakai HD, Nur N, Stedman KM, Kurosawa N, Suwanto A. Sulfurisphaera javensis sp. nov., a hyperthermophilic and acidophilic archaeon isolated from Indonesian hot spring, and reclassification of Sulfolobus tokodaii Suzuki et al. 2002 as Sulfurisphaera tokodaii comb. nov. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(6):1907-1913.
[16] Brock TD, Brock KM, Belly RT, Weiss RL. Sulfolobus:a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie, 1972, 84(1):54-68.
[17] Huber G, Spinnler C, Gambacorta A, Stetter KO. Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Systematic and Applied Microbiology, 1989, 12(1):38-47.
[18] Liu LJ, You XY, Guo X, Liu SJ, Jiang CY. Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(10):2395-2400.
[19] Sun CW, Chen ZW, He ZG, Zhou PJ, Liu SJ. Purification and properties of the sulfur oxygenase/reductase from the acidothermophilic archaeon, Acidianus strain S5. Extremophiles, 2003, 7(2):131-134.
[20] He ZG, Li YQ, Zhou PJ, Liu SJ. Cloning and heterologous expression of a sulfur oxygenase/reductase gene from the thermoacidophilic archaeon Acidianus sp. S5 in Escherichia coli. FEMS Microbiology Letters, 2000, 193(2):217-221.
[21] Urich T, Gomes CM, Kletzin A, Frazão C. X-ray structure of a self-compartmentalizing sulfur cycle metalloenzyme. Science, 2006, 311(5763):996-1000.
[22] Li M, Chen ZW, Zhang PF, Pan XW, Jiang CY, An XM, Liu SJ, Chang WR. Crystal structure studies on sulfur oxygenase reductase from Acidianus tengchongensis. Biochemical and Biophysical Research Communications, 2008, 369(3):919-923.
[23] Veith A, Urich T, Seyfarth K, Protze J, Frazão C, Kletzin A. Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of Acidianus ambivalens. Frontiers in Microbiology, 2011, 2:37.
[24] Chen ZW, Jiang CY, She QX, Liu SJ, Zhou PJ. Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase of Acidianus tengchongensis. Applied and Environmental Microbiology, 2005, 71(2):621-628.
[25] Chen ZW, Liu YY, Wu JF, She Q, Jiang CY, Liu SJ. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates. Applied Microbiology and Biotechnology, 2007, 74(3):688-698.
[26] Hell R, Dahl C, Knaff D, Leustek T. Sulfur metabolism in phototrophic organisms. Dordrecht, Netherlands:Springer, 2008:319-335.
[27] Marcia M, Ermler U, Peng GH, Michel H. A new structure-based classification of sulfide:quinone oxidoreductases. Proteins, 2010, 78(5):1073-1083.
[28] Sousa FM, Pereira JG, Marreiros BC, Pereira MM. Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases:SQR and FCSD. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2018, 1859(9):742-753.
[29] Chen J, Ren BW, Liu C, Sun L, Liu LJ. Recent advances in classification of sulfide quinone oxidoreductases. Natural Science, 2019, 1(2):237-238. (in Chinese)陈静, 任宝伟, 刘畅, 孙丽, 刘丽君. 硫化物:醌氧化还原酶分类最新研究进展. 自然科学, 2019, 1(2):237-238.
[30] Brito JA, Sousa FL, Stelter M, Bandeiras TM, Vonrhein C, Teixeira M, Pereira MM, Archer M. Structural and functional insights into sulfide:quinone oxidoreductase. Biochemistry, 2009, 48(24):5613-5622.
[31] Auernik KS, Maezato Y, Blum PH, Kelly RM. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Applied and Environmental Microbiology, 2008, 74(3):682-692.
[32] Liu LJ, You XY, Zheng HJ, Wang SY, Jiang CY, Liu SJ. Complete genome sequence of Metallosphaera cuprina, a metal sulfide-oxidizing archaeon from a hot spring. Journal of Bacteriology, 2011, 193(13):3387-3388.
[33] Kozubal MA, Dlakić M, Macur RE, Inskeep WP. Terminal oxidase diversity and function in "Metallosphaera yellowstonensis":gene expression and protein modeling suggest mechanisms of Fe(Ⅱ) oxidation in the Sulfolobales. Applied and Environmental Microbiology, 2011, 77(5):1844-1853.
[34] Müller FH, Bandeiras TM, Urich T, Teixeira M, Gomes CM, Kletzin A. Coupling of the pathway of sulphur oxidation to dioxygen reduction:characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Molecular Microbiology, 2004, 53(4):1147-1160.
[35] Liu YC, Beer LL, Whitman WB. Sulfur metabolism in archaea reveals novel processes. Environmental Microbiology, 2012, 14(10):2632-2644.
[36] Kappler U, Dahl C. Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiology Letters, 2001, 203(1):1-9.
[37] Kappler U. Bacterial sulfite-oxidizing enzymes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2011, 1807(1):1-10.
[38] Zimmermann P, Laska S, Kletzin A. Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens. Archives of Microbiology, 1999, 172(2):76-82.
[39] Protze J, Müller F, Lauber K, Naß B, Mentele R, Lottspeich F, Kletzin A. An extracellular tetrathionate hydrolase from the thermoacidophilic archaeon Acidianus ambivalens with an activity optimum at pH 1. Frontiers in Microbiology, 2011, 2:68.
[40] Krupovic M, Peixeiro N, Bettstetter M, Rachel R, Prangishvili D. Archaeal tetrathionate hydrolase goes viral:secretion of a sulfur metabolism enzyme in the form of virus-like particles. Applied and Environmental Microbiology, 2012, 78(15):5463-5465.
[41] Liu LJ, Stockdreher Y, Koch T, Sun ST, Fan Z, Josten M, Sahl HG, Wang Q, Luo YM, Liu SJ, Dahl C, Jiang CY. Thiosulfate transfer mediated by DsrE/TusA homologs from acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina. Journal of Biological Chemistry, 2014, 289(39):26949-26959.
[42] Dahl C. Cytoplasmic sulfur trafficking in sulfur-oxidizing prokaryotes. IUBMB Life, 2015, 67(4):268-274.
[43] Jiang CY, Liu LJ, Guo X, You XY, Liu SJ, Poetsch A. Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics. Journal of Proteomics, 2014, 109:276-289.
[44] Boughanemi S, Lyonnet J, Infossi P, Bauzan M, Kosta A, Lignon S, Giudici-Orticoni MT, Guiral M. Microbial oxidative sulfur metabolism:biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus. FEMS Microbiology Letters, 2016, 363(15):fnw156.
[45] Stockdreher Y, Sturm M, Josten M, Sahl HG, Dobler N, Zigann R, Dahl C. New proteins involved in sulfur trafficking in the cytoplasm of Allochromatium vinosum. Journal of Biological Chemistry, 2014, 289(18):12390-12403.