马缨杜鹃根系微生物群落结构及其变化
作者:
基金项目:

贵州省科技合作项目(黔科合LH字[2017]7362号);贵州省重点实验室项目(黔科合计Z字[2011]4005号);国家自然科学基金委员会-贵州省人民政府喀斯特科学研究中心项目(U1812401)


Structure and composition variation of the root-microbiota of Rhododendron delavayi
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]为了解野生马缨杜鹃根系微生物的群落结构特征,比较百里杜鹃内马缨杜鹃根际土壤、根表及根内3个生态位微生物群落组成差异,探究杜鹃根系生态位之间、变化菌属间的相互关系,以期为今后杜鹃根系微生物研究提供具有参考价值的数据。[方法]对百里杜鹃内野生马缨杜鹃根系微生物16S rRNA V4区和ITS1区进行高通量测序,比较分析根际土壤、根表及根内微生物群落多样性及组成差异;并基于共变化网络分析进一步探究差异菌属间的相互关系。[结果]马缨杜鹃根系不同的生态位之间,微生物群落结构存在差异,其中以根际土壤与根表、根内差异更为显著,且细菌群落差异小于真菌群落。且从根际-根表-根内,马缨杜鹃根系细菌α-多样性显著下降。马缨杜鹃根系微生物分布于41细菌门和6个真菌门。优势细菌门为变形菌门(Proteobacteria,39.64%±0.08,69.47%±0.12,77.34%±0.07)、酸杆菌门(Acidobacteria,34.10%±0.11,11.03%±0.04,9.18%±0.04)以及放线菌门(Actinobacteria,10.19%±0.03,8.70%±0.02,7.08%±0.01),它们占整体细菌群落总丰度的80%以上。同时8个细菌菌门的相对丰度在根际土壤、根表和根内间显著变化,且它们的相对丰度占细菌群落总丰度的75%以上。真菌主要分布于接合菌门(Zygomycota)、担子菌门(Basidiomycota)和子囊菌门(Ascomycota),它们占整体菌群的99%以上。马缨杜鹃根系存在589个属的细菌,390个属的真菌,从根际-根表-根内,其中25个细菌属和10个真菌属的相对丰度发生显著变化。马缨杜鹃根系微生物群落共变化网络分析表明:在马缨杜鹃根系不同生态位间,除Waitea外,包括枝孢菌属(Cladosporium)、拟盘多毛孢属(Pestalotiopsis)等在内的8个差异真菌菌属均与细菌菌属显著相关,它们相互作用调控微生物群落结构的变化。BryobacterNocardiaRhizomicrobiumTelmatobacter等核心菌属对马缨杜鹃根系微生物群落共变化网络的变化具有十分重要的调控作用。[结论]百里杜鹃地区马缨杜鹃根际土壤、根表以及根内3个生态位间,微生物群落组成存在差异;而造成微生物组成存在差异这一结果,可能与马缨杜鹃根系密切相关。同时,共变化网络分析揭示出马缨杜鹃根系生态位之间,细菌和真菌彼此间互作。

    Abstract:

    [Objective] The aim of this study was to understand the structure variation and assembly of root-microbiota of wild Rhododendron delavay. The spatial resolution of the study distinguished three niches of Rhododendron delavayi root, the endosphere, rhizoplane, and rhizosphere. Here we compared the microbial community structure and composition variation between the three niches. [Methods] A detailed characterization of the root-microbiota of the Rhododendron delavayi by deep sequencing, using 16S rRNA V4 and ITS1 regions of microorganisms. The diversity and composition of microbial community from three niches were compared. In addition, we discussed the relationship between differential microbial genera based on co-occurrence network.[Results] In the constrained unconstrained principal coordinate analyses of Bray-Curtis distances between samples, microbial communities vary significantly between three niches. Moreover, the separation of root-microbiota from rhizosphere to rhizoplane is larger. The bacterial α-diversity between three niches is considered as statistically significant difference. 41 bacterial phyla and 6 fungal phyla abundance in the root-microbiota. The dominant bacterial phyla included Proteobacteria, Acidobacteria and Actinobacteria, which occupied more than 80% of the total abundance of bacterial communities. The dominant fungal phyla included Zygomycota, Basidiomycota and Ascomycota, which account for more than 99% of the total abundance of fungal communities. 589 bacterial genera and 390 fungal genera abundance in the root-microbiota. Moreover, the abundance of 25 bacterial and 10 fungal genera varied between three niches. Furthermore, analyzing the co-occurrence network of the differential genera showed the interaction between fungi and bacteria in the root-microbiota. Eight differential fungi was significantly correlated to differential bacteria, except Waitea. As the core genera in the co-occurrence network, Bryobacter, Nocardia, Rhizomicrobium and Telmatobacter played a very important regulation.[Conclusion] Dynamic changes observed during root-microbiota, as well as compositions of three niches, support a hypothesis for root microbiome assembly correlated with the root. At the same time, co-occurrence network analysis revealed bacteria and fungi interacted with each other among the three niches.

    参考文献
    [1] Sharma A, Poudel RC, Li AR, Xu JC, Guan KY. Genetic diversity of Rhododendron delavayi var. delavayi (C. B. Clarke) Ridley inferred from nuclear and chloroplast DNA:implications for the conservation of fragmented populations. Plant Systematics and Evolution, 2014, 300(8):1853-1866.
    [2] Ma YP, Chamberlain D, Sun WB, Zhang CQ. A new species of Rhododendron (Ericaceae) from Baili Rhododendron nature reserve, NW Guizhou, China. Phytotaxa, 2015, 195(2):197-200.
    [3] Mao AA, Vijayan D, Singha RKN, Pradhan S. In vitro propagation of Rhododendron wattii Cowan-a critically endangered and endemic plant from India. In Vitro Cellular & Developmental Biology-Plant, 2018, 54(1):45-53.
    [4] Singh KK, Singh M, Chettri A. In vitro propagation of Rhododendron griffithianum wt.:an endangered Rhododendron species of Sikkim Himalaya. Journal of Applied Biology and Biotechnology, 2016, 4(2):72-75.
    [5] Yang HW, Li J, Xiao YH, Gu YB, Liu HW, Liang YL, Liu XD, Hu J, Meng DL, Yin HQ. An integrated insight into the relationship between soil microbial community and tobacco bacterial wilt disease. Frontiers in Microbiology, 2017, 8:2179.
    [6] Ulrich K, Ulrich A, Ewald D. Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiology Ecology, 2008, 63(2):169-180.
    [7] Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Applied and Environmental Microbiology, 2001, 67(1):172-178.
    [8] Ravin NV, Mardanov AV, Skryabin KG. Metagenomics as a tool for the investigation of uncultured microorganisms. Russian Journal of Genetics, 2015, 51(5):431-439.
    [9] Qi HY, Sun QL, Ma JC. Big data management and analysis of microbiome. Acta Microbiologica Sinica, 2017, 57(6):932-941. (in Chinese)亓合媛, 孙清岚, 马俊才. 微生物组大数据管理与分析. 微生物学报, 2017, 57(6):932-941.
    [10] Zhang YZ, Xu J, Riera N, Jin T, Li JY, Wang N. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome, 2017, 5:97.
    [11] Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8):478-486.
    [12] Hardoim PR, van Overbeek LS, van Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 2008, 16(10):463-471.
    [13] Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. Using QⅡME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Bioinformatics, 2011, 36(1):10.7.1-10.7.20.
    [14] Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49):E7996-E8005.
    [15] Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8):E911-E922.
    [16] Zhang L, Xu HM, Zhu BL. Association of rhizosphere soil microbiome with the occurrence and development of replant disease-a review. Acta Microbiologica Sinica, 2016, 56(8):1234-1241. (in Chinese)张蕾, 徐慧敏, 朱宝利. 根际微生物与植物再植病的发生发展关系. 微生物学报, 2016, 56(8):1234-1241.
    [17] Li S, Wu FZ. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Frontiers in Microbiology, 2018, 9:1521.
    [18] Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, Schadt CW. The Populus holobiont:dissecting the effects of plant niches and genotype on the microbiome. Microbiome, 2018, 6:31.
    [19] Wang XL, Wang ZK, Jiang P, He YL, Mu YD, Lv XH, Zhuang L. Bacterial diversity and community structure in the rhizosphere of four Ferula species. Scientific Reports, 2018, 8(1):5345.
    [20] Zhao F, Zhao MZ, Wang Y, Pang FH. Biodiversity of bacteria and fungi in rhizosphere of strawberry with different continuous cropping years. Microbiology China, 2017, 44(6):1377-1386. (in Chinese)赵帆, 赵密珍, 王钰, 庞夫花. 不同连作年限草莓根际细菌和真菌多样性变化. 微生物学通报, 2017, 44(6):1377-1386.
    [21] Na XF, Xu TT, Li M, Zhou ZN, Ma SL, Wang J, He J, Jiao BZ, Ma F. Variations of bacterial community diversity within the rhizosphere of three phylogenetically related perennial shrub plant species across environmental gradients. Frontiers in Microbiology, 2018, 9:709.
    [22] Novello G, Gamalero E, Bona E, Boatti L, Mignone F, Massa N, Cesaro P, Lingua G, Berta G. The rhizosphere bacterial microbiota of Vitis vinifera cv. pinot noir in an integrated pest management vineyard. Frontiers in Microbiology, 2017, 8:1528.
    [23] Li YK, Sun YF, Lei YH, Zhou X, Yin Y, Qin K. Fungal community diversity in rhizosphere soil of Lycium barbarum L. based on high-throughput sequencing. Acta Microbiologica Sinica, 2017, 57(7):1049-1059. (in Chinese)李越鲲, 孙燕飞, 雷勇辉, 周旋, 尹跃, 秦垦. 枸杞根际土壤真菌群落多样性的高通量测序. 微生物学报, 2017, 57(7):1049-1059.
    [24] Zimudzi J, van der Waals JE, Coutinho TA, Cowan DA, Valverde A. Temporal shifts of fungal communities in the rhizosphere and on tubers in potato fields. Fungal Biology, 2018, 122(9):928-934.
    [25] Wen XY, Dubinsky E, Wu Y, Yu R, Chen F. Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop's rhizosphere. Journal of Integrative Agriculture, 2016, 15(8):1892-1902.
    [26] Lin C, Tsai CH, Chen PY, Wu CY, Chang YL, Yang YL, Chen YL. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One, 2018, 13(4):e0196520.
    [27] Zhang N, Chen Y, Wang LL, Li XY, Wang JN, Zhou T, Qu FJ, Xu YP. Advances in the effect of Paenibacillus polymyxa in controlling of plant soil-borne diseases and growth promotion. Journal of Microbiology, 2017, 37(5):91-97. (in Chinese)张楠, 陈岩, 王丽丽, 李晓宇, 王佳宁, 周通, 曲芳京, 徐永平. 多粘类芽胞杆菌对植物土传病害的防控及促生长作用研究进展. 微生物学杂志, 2017, 37(5):91-97.
    [28] Ueki A, Kodama Y, Kaku N, Shiromura T, Satoh A, Watanabe K, Ueki K. Rhizomicrobium palustre gen. nov., sp. nov., a facultatively anaerobic, fermentative stalked bacterium in the class Alphaproteobacteria isolated from rice plant roots. Journal of General and Applied Microbiology, 2010, 56(3):193-203.
    [29] Xue L, Ren HD, Li S, Leng XH, Yao XH. Soil bacterial community structure and co-occurrence pattern during vegetation restoration in karst rocky desertification area. Frontiers in Microbiology, 2017, 8:2377.
    [30] Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME Journal, 2012, 6(2):343-351.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

方敏,徐小蓉,唐明,唐婧. 马缨杜鹃根系微生物群落结构及其变化[J]. 微生物学报, 2019, 59(8): 1522-1534

复制
分享
文章指标
  • 点击次数:1237
  • 下载次数: 1344
  • HTML阅读次数: 2585
  • 引用次数: 0
历史
  • 收稿日期:2018-10-08
  • 最后修改日期:2019-01-21
  • 在线发布日期: 2019-07-31
文章二维码