基于空腔填充效应构建伯克霍尔德菌脂肪酶LipA的热稳定性突变体
作者:
基金项目:

国家自然科学基金项目(31370802,31870787);福建省科技厅重点项目(2013H0021);福建省自然科学基金项目(2017J01441)


Effect of cavity-filling mutations on thermostability of lipase LipA from Burkholderia sp.
Author:
  • Yanru Liu

    Yanru Liu

    National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology, Ministry of Education;College of Life Sciences, Fujian Normal University, Fuzhou 350108, Fujian Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Xin Li

    Xin Li

    National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology, Ministry of Education;College of Life Sciences, Fujian Normal University, Fuzhou 350108, Fujian Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Panpan Dong

    Panpan Dong

    National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology, Ministry of Education;College of Life Sciences, Fujian Normal University, Fuzhou 350108, Fujian Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Jianzhong Huang

    Jianzhong Huang

    National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology, Ministry of Education;College of Life Sciences, Fujian Normal University, Fuzhou 350108, Fujian Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Zhengyu Shu

    Zhengyu Shu

    National & Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, Engineering Research Center of Industrial Microbiology, Ministry of Education;College of Life Sciences, Fujian Normal University, Fuzhou 350108, Fujian Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]中温伯克霍尔德菌胞外脂肪酶LipA在工业领域具有重要的应用价值。利用蛋白质工程技术来提高其热稳定性,对开发脂肪酶LipA酶制剂及提高其应用范围及应用效果,具有重要的意义。[方法]利用生物信息学软件Castp、Voronoia和Cave分析LipA分子中存在的空腔及其组成氨基酸残基;利用FoldX软件构建上述氨基酸残基的突变体电子文库,并基于空腔效应(体积变小)、自由能变化值(降低)和空间结构特点等对前述突变体电子文库进行筛选。从突变体电子文库中选择具有代表性的突变体,通过基因工程技术,引入突变。经诱导表达后,实验验证并筛选出热稳定性的突变体。[结果]构建了一个由58个突变体组成的电子文库;并对其中17个代表性的突变体进行了实验验证;筛选到2个热稳定性有明显提高的突变体LipA-His15Pro和LipA-Ala210Val;其叠加突变体LipA-His15Pro/Ala210Val的T5012较野生型LipA提高了8℃,在55℃下的半衰期较野生型脂肪酶LipA提高了23.1倍。[结论]基于空腔填充技术构建热稳定性伯克霍尔德菌胞外脂肪酶LipA突变体,是一种行之有效的策略。

    Abstract:

    [Objective] To improve the thermostability of lipase LipA from Burkholderia sp., a series of cavity-filled lipase LipA mutants were constructed and evaluated. [Methods] Amino acid residuals consisted of cavities in 3D structural model of lipase LipA were predicted using Castp, Voronoia and Cave, and then computational libraries of every amino acid residuals were constructed using software packages FoldX. The following types of mutants were excluded from the computational libraries:(1) volume of the cavity was increased; (2) value of free energy, ΔΔG, was over -0.5 kcal/mol. Total 58 mutants were screened from the computational libraries, and 17 mutants were selected to verify the mutation effect. [Results] Thermostability of lipase mutants (LipA-His15Pro and LipA-Ala210Val) were improved and T5012 value of lipase LipA-His15Pro and lipase LipA-Ala210Val increased by 4 ℃ and 2 ℃, respectively. Thermostability of the superimposing mutant lipase LipA-His15Pro/Ala210Val was further improved and the half-life (t1/2) at 55 ℃ increased by 23.1 times. [Conclusion] Cavity-filling mutation was a feasible technique to improve the thermostability of lipase LipA from Burkholderia sp.

    参考文献
    [1] Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT. The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 1999, 29:119-131.
    [2] Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzyme and Microbial Technology, 2006, 39(2):235-251.
    [3] Pucci F, Rooman M. Physical and molecular bases of protein thermal stability and cold adaptation. Current Opinion in Structural Biology, 2017, 42:117-128.
    [4] Eijsink VGH, Gåseidnes S, Borchert TV, van den Burg B. Directed evolution of enzyme stability. Biomolecular Engineering, 2005, 22(1-3):21-30.
    [5] Floor RJ, Wijma HJ, Colpa DI, Ramos-Silva A, Jekel PA, Szymański W, Feringa BL, Marrink SJ, Janssen DB. Computational library design for increasing Haloalkane dehalogenase stability. Chem Bio Chem, 2014, 15(11):1660-1672.
    [6] Wijma HJ, Floor RJ, Jekel PA, Baker D, Marrink SJ, Janssen DB. Computationally designed libraries for rapid enzyme stabilization. Protein Engineering, Design and Selection, 2014, 27(2):49-58.
    [7] Hubbard SJ, Gross KH, Argos P. Intramolecular cavities in globular proteins. Protein Engineering, Design and Selection, 1994, 7(5):613-626.
    [8] Hubbard SJ, Argos P. Cavities and packing at protein interfaces. Protein Science, 1994, 3(12):2194-2206.
    [9] Hubbard SJ, Argos P. A functional role for protein cavities in domain:domain motions. Journal of Molecular Biology, 1996, 261(2):289-300.
    [10] Merski M, Shoichet BK. Engineering a model protein cavity to catalyze the Kemp elimination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40):16179-16183.
    [11] Joo JC, Pohkrel S, Pack SP, Yoo YJ. Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity. Journal of Biotechnology, 2010, 146(1/2):31-39.
    [12] Ece S, Evran S, Janda JO, Merkl R, Sterner R. Improving thermal and detergent stability of Bacillus stearothermophilus neopullulanase by rational enzyme design. Protein Engineering, Design and Selection, 2015, 28(6):147-151.
    [13] Liu YR, Qiu FJ, Shu ZY, Wang ZZ, Qiu LQ, Li X, Jiang XZ, Huang JZ. Purification and enzymatic characterization of the extracellular lipase from Burkholderia sp. ZYB002. Journal of Fujian Normal University (Natural Science Edition), 2014, 30(3):100-105. (in Chinese)刘艳如, 邱芳锦, 舒正玉, 王作镇, 邱黎清, 李欣, 江贤章, 黄建忠. 伯克霍尔德菌ZYB002胞外脂肪酶的分离纯化及其酶学性质分析. 福建师范大学学报(自然科学版), 2014, 30(3):100-105.
    [14] Shu ZY, Wu JG, Chen D, Cheng LX, Zheng Y, Chen JP, Huang JZ. Optimization of Burkholderia sp. ZYB002 lipase production for pitch control in thermomechanical pulping (TMP) processes. Holzforschung, 2012, 66(3):341-348.
    [15] Liu YR, Qiu LQ, Huang JZ, Zhao BC, Wang ZZ, Zhu XL, Gao YY, Shu ZY. Screening for mutants with thermostabe lipase A from Burkholderia sp. ZYB002. Acta Microbiologica Sinica, 2015, 55(6):748-754. (in Chinese)刘艳如, 邱黎清, 黄建忠, 赵丙春, 王作镇, 朱晓兰, 高媛媛, 舒正玉. 热稳定性伯克霍尔德菌脂肪酶A突变体的筛选. 微生物学报, 2015, 55(6):748-754.
    [16] Liu YR, Zhao BC, Dong PP, Qiu LQ, Huang JZ, Zhu XL, Wang ZZ, Shu ZY. Computer-aid screening of thermostable lipase LipA from Burkholderia sp. ZYB002. Acta Microbiologica Sinica, 2017, 57(7):1014-1025. (in Chinese)刘艳如, 赵丙春, 董盼盼, 邱黎清, 黄建忠, 朱晓兰, 王作镇, 舒正玉. 理性设计盐桥构建伯克霍尔德菌脂肪酶热稳定突变体. 微生物学报, 2017, 57(7):1014-1025.
    [17] Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. Castp:computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 2006, 34(Web Server issue):W116-W118.
    [18] Rother K, Hildebrand PW, Goede A, Gruening B, Preissner R. Voronoia:Analyzing packing in protein structures. Nucleic Acids Research, 2009, 37(Database issue):D393-D395.
    [19] Buša J, Hayryan S, Hu CK, Skrivanek J, Wu MC. Enveloping triangulation method for detecting internal cavities in proteins and algorithm for computing their surface areas and volumes. Journal of Computational Chemistry, 2009, 30(3):346-357.
    [20] Maupetit J, Derreumaux P, Tuffery P. Pep-fold:an online resource for de novo peptide structure prediction. Nucleic Acids Research, 2009, 37(Web Server issue):W498-W503.
    [21] Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. Proteins, Structure, Function, and Bioinformatics, 2002, 47(3):393-402.
    [22] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1/2):248-254.
    [23] Hiol A, Jonzo MD, Druet D, Comeau L. Production, purification and characterization of an extracellular lipase from Mucor hiemalis f. hiemalis. Enzyme and Microbial Technology, 1999, 25(1/2):80-87.
    [24] Zhao HM, Arnold FH. Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Engineering, Design and Selection, 1999, 12(1):47-53.
    [25] Abraham T, Abraham T, Pack SP, Yoo YJ. Stabilization of Bacillus subtilis lipase a by increasing the residual packing. Biocatalysis, 2005, 23(3/4):217-224.
    [26] Lazar GA, Handel TM. Hydrophobic core packing and protein design. Current Opinion in Chemical Biology, 1998, 2(6):675-679.
    [27] Vriend G, Berendsen HJC, van der Zee JR, van der Burg B, Venema G, Eijsink VGH. Stabilization of the neutral protease of Bacillus stearothermophilus by removal of a buried water molecule. Protein Engineering, Design and Selection, 1991, 4(8):941-945.
    [28] Wijma HJ, Floor RJ, Janssen DB. Structure-and sequence-analysis inspired engineering of proteins for enhanced thermostability. Current Opinion in Structural Biology, 2013, 23(4):588-594.
    [29] Reetz MT, Carballeira JD, Vogel A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angewandte Chemie, 2006, 118(46):7909-7915.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘艳如,李鑫,董盼盼,黄建忠,舒正玉. 基于空腔填充效应构建伯克霍尔德菌脂肪酶LipA的热稳定性突变体[J]. 微生物学报, 2019, 59(8): 1535-1546

复制
分享
文章指标
  • 点击次数:875
  • 下载次数: 1232
  • HTML阅读次数: 1357
  • 引用次数: 0
历史
  • 收稿日期:2018-10-08
  • 最后修改日期:2019-01-25
  • 在线发布日期: 2019-07-31
文章二维码