高通量测序分析实验性脑脊髓炎肠道微生物变化及与IL-17、IFN-γ相关性
作者:
基金项目:

甘肃省自然科学基金(18JR3RA315);甘肃省神经病学国际合作基地项目(甘科外【2017】2号-33)


Correlation of gut microbiota with IL-17 and IFN-γ in experimental autoimmune encephalomyelitis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]通过建立实验性脑脊髓膜炎(EAE)小鼠模型,观察小鼠肠道菌群在不同发病时间点的变化和炎症因子IL-17、IFN-γ的表达情况,探讨肠道菌群的变化在EAE发病中的免疫调节作用。[方法]将48只C57BL/6小鼠按照随机数字表法分为正常对照组、EAE模型组各24只。EAE组采用MOG35-55与完全弗氏佐剂的混合物制备模型,进行神经功能评分,记录体重变化。分别取免疫后7、14、21、30 d的小鼠粪便,对样本DNA的16S rDNA V3/V4区基因测序。ELASE法检测IL-17、IFN-γ的表达。[结果]EAE组小鼠血液中IL-17、IFN-γ的表达从第7天开始逐渐升高,21 d时达到高峰。14 d时,EAE组与正常对照组相比,物种丰度有显著性差异(P<0.05)的菌种有:Alistipes、布牢特氏菌属、毛螺菌科_NK4A136_group等。30 d EAE组与正常对照组相比,物种丰度有显著性差异(P<0.05)的菌种有:Allobaculum、真细菌属、螺杆菌等。通过LefSe分析,在7、14、21 d中分别主要作用的微生物菌种逐渐减少,在21 d时最少。Odoribacter在21 d时起了主要作用。[结论]与正常对照组相比,14、21、30 d EAE小鼠肠道菌种的丰度均发生了变化,产生了肠道菌群的紊乱;其中普雷沃氏菌属_NK3B31_group的丰度均较正常对照组降低,与IFN-γ呈负相关(r=-0.537,P<0.01)。普雷沃氏菌属_NK3B31_group可能是导致MS脱髓鞘发生的关键菌属。EAE组各个时间点相比起主要作用的肠道菌群种类减少,多样性降低。其中,Odoribacter是在21 d高峰期起主要作用的菌种,但其作用机制需要深入研究。EAE组中炎症因子IL-17、IFN-γ表达的升高,促进了MOG35-55诱发的炎症反应。

    Abstract:

    [Objective] To explore the immune regulatory effect of gut microbiota in experimental autoimmune encephalomyelitis (EAE), we studied the change of gut microbiota and its correlation with the production of IL-17 and IFN-γ at different times. [Methods] Female C57BL/6 mice were divided randomly into 2 groups:the normal group and EAE. EAE was induced with MOG35-55 mixed with complete Freund's adjuvant. The weight and neurological scores of 2 groups were observed. The 16S rDNA V3/V4 region of DNA of gut microbiota was indentified by the Illumina Mi Seq high-throughput sequencing.IL-17 and IFN-γ in the blood were detected by ELSIA. [Results] The production of IL-17 and IFN-γ reached the peak on day 21. The abundance of Alistipes, Blautia and Lachnospiraceae_NK4A136_group in EAE were different from the normal group on day 14. However, the abundance of Allobaculum, Eubacterium, Helicobacter were significantly changed on day 30. According to LefSe analysis, the microbial strains that were mainly affected on 7 day, 14 day and 21 day gradually decreased, and dropped the least on 21 day. Odoribacter played an important role on 21 day. Compared with the normal group, the abundance and diversity of gut microbiota in EAE changed. The abundance of Prevotellaceae_NK3B31_group in EAE was lower than the normal group, and related negatively with the production of IFN-γ (r=-0.537, P<0.01). Prevotellaceae_NK3B31_group maybe the key bacteria that caused the demyelination of MS. [Conclusion] The abundance and diversity of gut microbiota played the important role at the different times in the EAE group. The production of IL-17 and IFN-γ leaded to the inflammatory of EAE that induced by MOG35-55.

    参考文献
    [1] Dilokthornsakul P, Valuck RJ, Nair KV, Corboy JR, Allen RR, Campbell JD. Multiple sclerosis prevalence in the United States commercially insured population. Neurology, 2016, 86(11):1014-1021.
    [2] Kingwell E, Marriott JJ, Jetté N, Pringsheim T, Makhani N, Morrow SA, Fisk JD, Evans C, Béland SG, Kulaga S, Dykeman J, Wolfson C, Koch MW, Marrie RA. Incidence and prevalence of multiple sclerosis in Europe:a systematic review. BMC Neurology, 2013, 13:128.
    [3] Tao C, Simpson S Jr, van der Mei I, Blizzard L, Havrdova E, Horakova D, Shaygannejad V, Lugaresi A, Izquierdo G, Trojano M, Duquette P, Girard M, Grand'Maison F, Grammond P, Alroughani R, Terzi M, Oreja-Guevara C, Sajedi SA, Iuliano G, Sola P, Lechner-Scott J, Pesch VV, Pucci E, Bergamaschi R, Barnett M, Ramo C, Singhal B, LA Spitaleri D, Slee M, Verheul F, Fernández Bolaños R, Amato MP, Cristiano E, Granella F, Hodgkinson S, Fiol M, Gray O, McCombe P, Saladino ML, Sánchez Menoyo JL, Shuey N, Vucic S, Shaw C, Deri N, Arruda WO, Butzkueven H, Spelman T, Taylor BV. Higher latitude is significantly associated with an earlier age of disease onset in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 2016, 87(12):1343-1349.
    [4] Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y. Epigenetics and autoimmunity. Journal of Autoimmunity, 2010, 34(3):J207-J219.
    [5] Selmaj I, Mycko MP, Raine CS, Selmaj KW. The role of exosomes in CNS inflammation and their involvement in multiple sclerosis. Journal of Neuroimmunology, 2017, 306:1-10.
    [6] Brenton JN, Goldman MD. A study of dietary modification:perceptions and attitudes of patients with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2016, 8:54-57.
    [7] Joscelyn J, Kasper LH. Digesting the emerging role for the gut microbiome in central nervous system demyelination. Multiple Sclerosis Journal, 2014, 20(12):1553-1559.
    [8] Ly NP, Litonjua A, Gold DR, Celedón JC. Gut microbiota, probiotics, and vitamin D:interrelated exposures influencing allergy, asthma, and obesity? Journal of Allergy and Clinical Immunology, 2011, 127(5):1087-1094.
    [9] Tremlett H, Fadrosh DW, Faruqi AA, Hart J, Roalstad S, Graves J, Lynch S, Waubant E. Gut microbiota composition and relapse risk in pediatric MS:a pilot study. Journal of the Neurological Sciences, 2016, 363:153-157.
    [10] Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, Kanner R, Bencosme Y, Lee YK, Hauser SL, Crabtree-Hartman E, Sand IK, Gacias M, Zhu YJ, Casaccia P, Cree BAC, Knight R, Mazmanian SK, Baranzini SE. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40):10713-10718.
    [11] Stefferl A, Brehm U, Linington C. The myelin oligodendrocyte glycoprotein (MOG):a model for antibody-mediated demyelination in experimental autoimmune encephalomyelitis and multiple sclerosis. Journal of Neural Transmission. Supplementum, 2000, (58):123-133.
    [12] Barreau F, Meinzer U, Chareyre F, Berrebi D, Niwa-kawakita M, Dussaillant M, Foligne B, Ollendorff V, Heyman M, Bonacorsi S, Lesuffleur T, Sterkers G, Giovannini M, Hugot JP. CARD15/NOD2 is required for Peyer's patches homeostasis in mice. PLoS One, 2007, 2(6):e523.
    [13] Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, Patel B, Mazzola MA, Liu SR, Glanz BL, Cook S, Tankou S, Stuart F, Melo K, Nejad P, Smith K, Topçuolu BD, Holden J, Kivisäkk P, Chitnis T, de Jager PL, Quintana FJ, Gerber GK, Bry L, Weiner HL. Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 2016, 7:12015.
    [14] Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nature Reviews Immunology, 2015, 15(9):545-558.
    [15] Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM, Luckey DH, Marietta EV, Jeraldo PR, Chen XF, Weinshenker BG, Rodriguez M, Kantarci OH, Nelson H, Murray JA, Mangalam AK. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific Reports, 2016, 6:28484.
    [16] Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, Hammer A, Lee DH, May C, Wilck N, Balogh A, Ostermann AI, Schebb NH, Akkad DA, Grohme DA, Kleinewietfeld M, Kempa S, Thöne J, Demir S, Müller DN, Gold R, Linker RA. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 2016, 44(4):951-953.
    [17] Barreau F, Madre C, Meinzer U, Berrebi D, Dussaillant M, Merlin F, Eckmann L, Karin M, Sterkers G, Bonacorsi S, Lesuffleur T, Hugot JP. Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer's patches. Gut, 2010, 59(2):207-217.
    [18] Steinman L. Erratum:a brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nature Medicine, 2007, 13(3):385.
    [19] Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 Suppl 1:4615-4622.
    [20] Ma JY, Zhang RX, Cheng XD. Correlation between serum cytokine IL-17 and demyelinating neuropathy multiple sclerosis:a meta-analysis. Chinese Journal of Immunology, 2017, 33(12):1832-1837. (in Chinese)马金昀, 张若曦, 程晓东. 血清细胞因子IL-17与脱髓鞘性神经病多发性硬化相关性的研究:Meta分析. 中国免疫学杂志, 2017, 33(12):1832-1837.
    [21] Pan W, Banks WA, Kennedy MK, Gutierrez EG, Kastin AJ. Differential permeability of the BBB in acute EAE:enhanced transport of TNT-alpha. American Journal of Physiology, 1996, 271(4):E636-E642.
    [22] Galland L. The gut microbiome and the brain. Journal of Medicinal Food, 2014, 17(12):1261-1272.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李晓玲,张博,孙梦娇,鲍彩彩,王满侠. 高通量测序分析实验性脑脊髓炎肠道微生物变化及与IL-17、IFN-γ相关性[J]. 微生物学报, 2019, 59(9): 1651-1659

复制
分享
文章指标
  • 点击次数:1622
  • 下载次数: 1861
  • HTML阅读次数: 2093
  • 引用次数: 0
历史
  • 收稿日期:2018-12-26
  • 最后修改日期:2019-03-09
  • 在线发布日期: 2019-08-29
文章二维码