Abstract:[Objective] To explore the immune regulatory effect of gut microbiota in experimental autoimmune encephalomyelitis (EAE), we studied the change of gut microbiota and its correlation with the production of IL-17 and IFN-γ at different times. [Methods] Female C57BL/6 mice were divided randomly into 2 groups:the normal group and EAE. EAE was induced with MOG35-55 mixed with complete Freund's adjuvant. The weight and neurological scores of 2 groups were observed. The 16S rDNA V3/V4 region of DNA of gut microbiota was indentified by the Illumina Mi Seq high-throughput sequencing.IL-17 and IFN-γ in the blood were detected by ELSIA. [Results] The production of IL-17 and IFN-γ reached the peak on day 21. The abundance of Alistipes, Blautia and Lachnospiraceae_NK4A136_group in EAE were different from the normal group on day 14. However, the abundance of Allobaculum, Eubacterium, Helicobacter were significantly changed on day 30. According to LefSe analysis, the microbial strains that were mainly affected on 7 day, 14 day and 21 day gradually decreased, and dropped the least on 21 day. Odoribacter played an important role on 21 day. Compared with the normal group, the abundance and diversity of gut microbiota in EAE changed. The abundance of Prevotellaceae_NK3B31_group in EAE was lower than the normal group, and related negatively with the production of IFN-γ (r=-0.537, P<0.01). Prevotellaceae_NK3B31_group maybe the key bacteria that caused the demyelination of MS. [Conclusion] The abundance and diversity of gut microbiota played the important role at the different times in the EAE group. The production of IL-17 and IFN-γ leaded to the inflammatory of EAE that induced by MOG35-55.