中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析
作者:
基金项目:

国家自然科学基金(31702190);现代农业产业技术体系建设专项资金(CARS-44-KXJ7);福建省教育厅中青年教师教育科研项目(JAT170158);福建农林大学科技创新专项基金(CXZX2017342,CXZX2017343);福建省大学生创新创业训练计划(201610389053,201810389082,201810389029)


MicroRNA responses in the larval gut of Apis cerana cerana to Ascosphaera apis stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]蜜蜂球囊菌(Ascosphaera apis,简称球囊菌)是一种能够侵染中华蜜蜂(Apis cerana cerana,简称中蜂)幼虫的致死性真菌病原。微小RNA(microRNA,miRNA)可通过在转录后水平靶向抑制或降解mRNA而参与宿主与病原互作过程。本研究旨在对球囊菌胁迫的中蜂6日龄幼虫肠道的差异表达miRNA(DEmiRNA)及其靶基因进行深入分析,进而揭示DEmiRNA在中蜂响应球囊菌胁迫应答过程中的作用。[方法]利用Illumina MiSeq平台对正常及球囊菌胁迫的中蜂6日龄幼虫肠道(AcCK和AcT)进行测序,通过相关生物信息学软件预测DEmiRNA及其靶基因。通过Blast将靶基因注释到GO和KEGG数据库。利用Cytoscape软件构建DEmiRNA与其靶mRNA的调控网络。通过Stem-loop RT-PCR和qPCR验证测序数据的可靠性。[结果]本研究共预测出537个miRNA,其长度分布介于16-35 nt之间,且不同长度的miRNA首位碱基偏向性差异明显。通过Stem-loop RT-PCR证实了10个novel miRNA的表达。AcCK vs AcT比较组共有54个DEmiRNA,包含31个上调和23个下调miRNA,可分别靶向结合6170和8199个靶基因。GO分类结果显示上调和下调miRNA的靶基因分别涉及47和47个条目,富集基因数最多的皆为结合细胞进程和催化活性。KEGG代谢通路(pathway)富集分析结果表明上调和下调miRNA的靶基因分别富集在134和126条pathway,富集基因数最多的均为内吞作用和内质网中的蛋白质加工。调控网络分析结果表明,DEmiRNA及其靶mRNA形成十分复杂的调控关系;31个DEmiRNA可靶向结合51个与泛素介导的蛋白水解相关的mRNA,18个DEmiRNA可靶向结合14个与Jak-STAT信号通路相关的mRNA;miR-1277-x、miR-26-x、miR-27-y、miR-30-x、miR-6052-x等16个miRNA共同参与了上述两条免疫通路的调控。最后,随机挑选3个DEmiRNA进行qPCR验证,结果证明了测序数据的可靠性。[结论]本研究提供了中蜂幼虫肠道在球囊菌胁迫后期的miRNA的表达谱和差异表达信息,揭示了球囊菌与宿主之间在miRNA组学水平存在复杂的互作。miR-6052-x和miR-1277-x作为调控网络的核心可能通过影响细胞凋亡参与宿主的免疫防御,miR-26-x和miR-30-x可能通过调控Jak-STAT信号通路参与宿主的胁迫应答。本研究筛选出的关键DEmiRNA有望作为治疗白垩病的分子靶标。

    Abstract:

    [Objective] Ascosphaera apis is a lethal fungal pathogen for Apis cerana cerana larvae. microRNA can participate in host-pathogen interaction processes by inhibition or degradation of mRNA via targeting at post-transcriptional level. The aim of this study was to analyze the differentially expressed miRNAs (DEmiRNAs) and their target genes in the 6-day-old larval gut of A. c. cerana under A. apis stress and reveal DEmiRNAs' roles in the stress response process. [Methods] Normal and A. apis-challenged 6-day-old larval guts of A. c. cerana (AcCK and AcT) were sequenced using Illumina MiSeq platform, followed by prediction and analysis of DEmiRNAs and their target genes using related softwares. Target genes of DEmiRNAs were annotated to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases with Blast. Regulation networks between DEmiRNAs and target mRNAs were constructed using Cytoscape. Stem-loop RT-PCR and qPCR were conducted to verify the reliability of sequencing data. [Results] Deep sequencing of larval gut samples generated 537 miRNAs, the length of which was distributed between 16 nt and 35 nt. The first base bias of miRNAs with various length had apparent difference. The expression of 10 novel miRNAs were validated using Stem-loop RT-PCR. There were 54 DEmiRNAs in AcCK vs. AcT comparison group, including 31 up-regulated and 23 down-regulated miRNAs, which can respectively link 6170 and 8199 target genes. GO classification suggested that target genes of up-and down-regulated miRNAs were respectively involved in 47 and 47 terms, and the largest ones were binding, cellular process, and catalytic activity. KEGG pathway enrichment analysis demonstrated that target genes of up-and down-regulated miRNAs were respectively engaged in 134 and 126 pathways, and the mostly enriched ones were endocytosis and protein processing in endoplasmic reticulum. Analysis of regulation networks revealed that very complex regulation relationships existed between DEmiRNAs and corresponding target mRNAs; 31 miRNAs could bind 51 mRNAs associated with ubiquitin mediated proteolysis, and 18 miRNAs can bind 14 Jak-STAT signaling pathway-associated mRNAs; a total of 16 miRNAs, such as miR-1277-x, miR-26-x, miR-27-y, miR-30-x and miR-6052-x, can participate in regulating both of the above-mentioned immune pathways. Finally, three DEmiRNAs were randomly selected for qPCR, the result verified the reliability of our transcriptome sequencing data. [Conclusion] We first provided the expression profile and differential expression information of A. c. cerana miRNAs during the late stage of A. apis stress, revealed the complex interactions between A. apis and host at transcriptome level. As the core of regulation networks, miR-6052-x and miR-1277-x were likely to participate in host immune defense by affecting apoptosis, while miR-26-x and miR-30-x may join host responses to A. apis stress via regulation of Jak-STAT signaling pathway. Key DEmiRNAs screened in our study are expected to be used as potential molecular targets for chalkbrood control.

    参考文献
    [1] Lin ZG, Page P, Li L, Qin Y, Zhang YY, Hu FL, Neumann P, Zheng HQ, Dietemann V. Go east for better honey bee health:Apis cerana is faster at hygienic behavior than A. mellifera. PLoS One, 2016, 11(9):e0162647.
    [2] Chen DF, Guo R, Xiong CL, Liang Q, Zheng YZ, Xu XJ, Huang ZJ, Zhang ZN, Zhang L, Li WD, Tong XY, Xi WJ. Transcriptomic analysis of Ascosphaera apis stressing larval gut of Apis mellifera ligustica (Hyemenoptera:Apidae). Acta Entomologica Sinica, 2017, 60(4):401-411. (in Chinese)陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 黄枳腱, 张楠, 张璐, 李汶东, 童新宇, 席伟军. 胁迫意大利蜜蜂幼虫肠道的球囊菌的转录组分析. 昆虫学报, 2017, 60(4):401-411.
    [3] Zhao HX, Liang Q, Luo YX, Li JH, Zhang XF, Zeng XN. Chalkbrood disease in honey bees. Journal of Environmental Entomology, 2014, 36(2):233-239. (in Chinese)赵红霞, 梁勤, 罗岳雄, 李江红, 张学锋, 曾鑫年. 蜜蜂白垩病的研究进展. 环境昆虫学报, 2014, 36(2):233-239.
    [4] Maxfield-Taylor SA, Mujic AB, Rao S. First detection of the larval chalkbrood disease pathogen Ascosphaera apis (Ascomycota:Eurotiomycetes:Ascosphaerales) in adult Bumble bees. PLoS One, 2015, 10(4):e0124868.
    [5] Chen DF, Guo R, Xiong CL, Zheng YZ, Hou CS, Fu ZM. Morphological and molecular identification of chalkbrood disease pathogen Ascosphaera apis in Apis cerana cerana. Journal of Apicultural Research, 2018, 57(4):516-521.
    [6] Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell, 2009, 136(2):215-233.
    [7] Fullaondo A, Lee SY. Identification of putative miRNA involved in Drosophila melanogaster immune response. Developmental and Comparative Immunology, 2012, 36(2):267-273.
    [8] Asgari S. MicroRNA functions in insects. Insect Biochemistry and Molecular Biology, 2013, 43(4):388-397.
    [9] Liu MM, Yu HY, Zhao GJ, Huang QF, Lu YE, Ouyang B. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics, 2017, 18(1):481.
    [10] Raj Ojha C, Rodriguez M, Dever SM, Mukhopadhyay R, El-Hage N. Mammalian microRNA:an important modulator of host-pathogen interactions in human viral infections. Journal of Biomedical Science, 2016, 23(1):74.
    [11] Winter F, Edaye S, Hüttenhofer A, Brunel C. Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion. Nucleic Acids Research, 2007, 35(20):6953-6962.
    [12] Wu P, Qin GX, Qian HY, Chen T, Guo XJ. Roles of miR-278-3p in IBP2 regulation and Bombyx mori cytoplasmic polyhedrosis virus replication. Gene, 2016, 575(2):264-269.
    [13] Ashby R, Forêt S, Searle I, Maleszka R. MicroRNAs in honey bee caste determination. Scientific Reports, 2016, 6:18794.
    [14] Liu F, Peng W, Li Z, Li W, Li L, Pan J, Zhang S, Miao Y, Chen S, Su S. Next-generation small RNA sequencing for microRNAs profiling in Apis mellifera:comparison between nurses and foragers. Insect Molecular Biology, 2012, 21(3):297-303.
    [15] Hori S, Kaneko K, Saito TH, Takeuchi H, Kubo T. Expression of two microRNAs, ame-mir-276 and -1000, in the adult honeybee (Apis mellifera) brain. Apidologie, 2011, 42(1):89-102.
    [16] Evans JD, Huang Q. Interactions among host-parasite microRNAs during Nosema ceranae proliferation in Apis mellifera. Frontiers in Microbiology, 2018, 9:698.
    [17] Guo R, Zhang L, Xu XJ, Shi XL, Xiong CL, Zheng YZ, Fu ZM, Huang ZJ, Wang HQ, Hou ZX, Chen DF. Analysis of the differentially expressed genes in the 6-day-old larval gut of Apis cerana cerana under the stress of Ascosphaera apis. Journal of Environmental Entomology, 2017, 39(3):539-547. (in Chinese)郭睿, 张璐, 徐细建, 史秀丽, 熊翠玲, 郑燕珍, 付中民, 黄枳腱, 王鸿权, 侯志贤, 陈大福. 中华蜜蜂6日龄幼虫肠道响应球囊菌胁迫的差异表达基因分析. 环境昆虫学报, 2017, 39(3):539-547.
    [18] Chen DF, Guo R, Xiong CL, Liang Q, Zheng YZ, Xu XJ, Zhang ZN, Huang ZJ, Zhang L, Wang HQ, Xie YL, Tong XY. Transcriptome of Apis cerana cerana larval gut under the stress of Ascosphaera apis. Scientia Agricultura Sinica, 2017, 50(13):2614-2623. (in Chinese)陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 张曌楠, 黄枳腱, 张璐, 王鸿权, 解彦玲, 童新宇. 中华蜜蜂幼虫肠道响应球囊菌早期胁迫的转录组学. 中国农业科学, 2017, 50(13):2614-2623.
    [19] Guo R, Wang HP, Chen HZ, Xiong CL, Zheng YZ, Fu ZM, Zhao HX, Chen DF. Identification of Ascosphaera apis microRNAs and investigation of their regulation networks. Acta Microbiologica Sinica, 2018, 58(6):1077-1089. (in Chinese)郭睿, 王海朋, 陈华枝, 熊翠玲, 郑燕珍, 付中民, 赵红霞, 陈大福. 蜜蜂球囊菌的microRNA鉴定及其调控网络分析. 微生物学报, 2018, 58(6):1077-1089.
    [20] Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research, 2012, 40(1):37-52.
    [21] Allen E, Xie ZX, Gustafson AM, Carrington JC. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005, 121(2):207-221.
    [22] Chen CF, Ridzon DA, Broomer AJ, Zhou ZH, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005, 33(20):e179.
    [23] Huang Q, Chen YP, Wang RW, Schwarz RS, Evans JD. Honey bee microRNAs respond to infection by the microsporidian parasite Nosema ceranae. Scientific Reports, 2015, 5:17494.
    [24] 石元元. 东方蜜蜂遗传图谱构建以及雌性蜜蜂发育分子机理. 江西农业大学博士学位论文, 2014.
    [25] Wu XB, Wang ZL, Shi YY, Zhang F, Zeng ZJ. Effects of mating flight on sRNAs Expression in sexual matured virgin queens (Apis cerana cerana). Scientia Agricultura Sinica, 2013, 46(17):3721-3728. (in Chinese)吴小波, 王子龙, 石元元, 张飞, 曾志将. 婚飞对中华蜜蜂性成熟处女蜂王sRNAs表达的影响. 中国农业科学, 2013, 46(17):3721-3728.
    [26] Guo R, Chen DF, Huang ZJ, Liang Q, Xiong CL, Xu XJ, Zheng YZ, Zhang ZN, Xie YL, Tong XY, Hou ZX, Jiang LL, Dao C. Transcriptome analysis of Ascosphaera apis stressing larval gut of Apis cerana cerana. Acta Microbiologica Sinica, 2017, 57(12):1865-1878. (in Chinese)郭睿, 陈大福, 黄枳腱, 梁勤, 熊翠玲, 徐细建, 郑燕珍, 张楠, 解彦玲, 童新宇, 侯志贤, 江亮亮, 刀晨. 球囊菌胁迫中华蜜蜂幼虫肠道过程中病原的转录组学研究. 微生物学报, 2017, 57(12):1865-1878.
    [27] Wang ZZ, Ye XQ, Shi M, Li F, Wang ZH, Zhou YN, Gu QJ, Wu XT, Yin CL, Guo DH, Hu RM, Hu NN, Chen T, Zheng BY, Zou JN, Zhan LQ, Wei SJ, Wang YP, Huang JH, Fang XD, Strand MR, Chen XX. Parasitic insect-derived miRNAs modulate host development. Nature Communications, 2018, 9(1):2205.
    [28] Sripada L, Tomar D, Prajapati P, Singh R, Singh AK, Singh R. Systematic analysis of small RNAs associated with human mitochondria by deep sequencing:detailed analysis of mitochondrial associated miRNA. PLoS One, 2012, 7(9):e44873.
    [29] Gao ZH, Shi T, Luo XY, Zhang Z, Zhuang WB, Wang LJ. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot. BMC Genomics, 2012, 13(1):371.
    [30] Leclerc V, Reichhart JM. The immune response of Drosophila melanogaster. Immunological Reviews, 2010, 198(1):59-71.
    [31] Chen C, Eldein S, Zhou XS, Sun Y, Gao J, Sun YX, Liu CL, Wang L. Immune function of a Rab-related protein by modulating the JAK-STAT signaling pathway in the silkworm, Bombyx mori. Archives of Insect Biochemistry and Physiology, 2018, 97(1):e21434.
    [32] Jupatanakul N, Sim S, Angleró-Rodríguez YI, Souza-Neto J, Das S, Poti KE, Rossi SL, Bergren N, Vasilakis N, Dimopoulos G. Engineered Aedes aegypti JAK/STAT pathway-mediated immunity to dengue virus. PLoS Neglected Tropical Diseases, 2017, 11(1):e0005187.
    [33] Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 2006, 15(5):645-656.
    [34] Sadler AJ, Williams BRG. Interferon-inducible antiviral effectors. Nature Reviews Immunology, 2008, 8(7):559-568.
    [35] Li LW, Wei ZZ, Zhou YJ, Gao F, Jiang YF, Yu LX, Zheng H, Tong W, Yang S, Zheng HH, Shan TL, Liu F, Xia TQ, Tong GZ. Host miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by upregulating type I interferons. Virus Research, 2015, 195:86-94.
    [36] Zhang Q, Huang C, Yang Q, Gao L, Liu HC, Tang J, Feng WH. MicroRNA-30c modulates type I IFN responses to facilitate porcine reproductive and respiratory syndrome virus infection by targeting JAK1. The Journal of Immunology, 2016, 196(5):2272-2282.
    [37] 陈涛涌. 新型泛素化修饰介导的免疫调节//第十届全国免疫学学术大会汇编. 北京:中国免疫学会, 2015.
    [38] 陈阳. 鸭RIG-I在免疫调节中的作用及分子调控机制. 扬州大学博士学位论文, 2015.
    [39] Liu XY, Zhang FR, Shang JY, Liu YY, Lv XF, Yuan JN, Zhang TT, Li K, Lin XC, Liu X, Lei QQ, Fu XD, Zhou JG, Liang SJ. Renal inhibition of miR-181a ameliorates 5-fluorouracil-induced mesangial cell apoptosis and nephrotoxicity. Cell Death and Disease, 2018, 9(6):610.
    [40] Geng LY, Pan SM, Chen J, Zhu WJ, Gong YF, Liu ZZ, Peng YD, Zhao SY, Zhang CS, Li XL. Identification and bioinformatics analysis of differential expression microRNAs in the spleen between Beijing fatty chickens and Leghorns chickens. Scientia Agricultura Sinica, 2016, 49(4):754-764. (in Chinese)耿立英, 潘素敏, 陈娟, 朱文进, 巩元芳, 刘铮铸, 彭永东, 赵书雨, 张传生, 李祥龙. 北京油鸡和来航鸡脾脏差异表达microRNA的鉴定与分析. 中国农业科学, 2016, 49(4):754-764.
    [41] Xu HP, Hao W, He D, Xu YS. Smt3 is required for the immune response of silkworm, Bombyx mori. Biochimie, 2010, 92(10):1306-1314.
    [42] Yagi Y, Lim YM, Tsuda L, Nishida Y. Fat facets induces polyubiquitination of imd and inhibits the innate immune response in Drosophila. Genes to Cells, 2013, 18(11):934-945.
    [43] Li ZF, Pang Y. Ubiquitin-proteasome pathway and virus infection. Chinese Journal of Biotechnology, 2004, 20(2):151-156. (in Chinese)李朝飞, 庞义. 泛素-蛋白水解酶复合体通路与病毒侵染. 生物工程学报, 2004, 20(2):151-156.
    [44] Bao XY, Chen P, Liu TH, Wang L, Liu WB, Pan MH, Lu C. Advances in apoptosis-related genes in the silkworm, Bombyx mori. Acta Entomologica Sinica, 2017, 60(4):487-498. (in Chinese)包希艳, 陈鹏, 刘太行, 王腊, 刘文波, 潘敏慧, 鲁成. 家蚕凋亡相关基因研究进展. 昆虫学报, 2017, 60(4):487-498.
    [45] Wu Y, Wu YJ, Hui T, Wu HL, Wu Y, Wang WB. Reaper homologue IBM1 in silkworm Bombyx mori induces apoptosis upon baculovirus infection. FEBS Letters, 2013, 587(6):600-606.
    [46] Ponnuvel KM, Nakazawa H, Furukawa S, Asaoka A, Ishibashi J, Tanaka H, Yamakawa M. A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. Journal of Virology, 2003, 77(19):10725-10729.
    [47] He L, Hannon GJ. MicroRNAs:small RNAs with a big role in gene regulation. Nature Reviews Genetics, 2004, 5(7):522-531.
    [48] Machitani M, Sakurai F, Wakabayashi K, Nakatani K, Tachibana M, Mizuguchi H. MicroRNA miR-27 inhibits adenovirus infection by suppressing the expression of SNAP25 and TXN2. Journal of Virology, 2017, 91(12):e00159-17.
    [49] Buck AH, Perot J, Chisholm MA, Kumar DS, Tuddenham L, Cognat V, Marcinowski L, Dölken L, Pfeffer S. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA, 2010, 16(2):307-315.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜宇,童新宇,周丁丁,陈大福,熊翠玲,郑燕珍,徐国钧,王海朋,陈华枝,郭意龙,隆琦,郭睿. 中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析[J]. 微生物学报, 2019, 59(9): 1747-1764

复制
分享
文章指标
  • 点击次数:1230
  • 下载次数: 1532
  • HTML阅读次数: 1359
  • 引用次数: 0
历史
  • 收稿日期:2018-09-12
  • 最后修改日期:2018-11-15
  • 在线发布日期: 2019-08-29
文章二维码