罗伊氏乳杆菌肠道分离株的遗传多样性研究
作者:
基金项目:

国家自然科学基金(31622043);内蒙古自然科学基金(2016JQ04);内蒙古农业大学杰出青年科学基金(2017XJQ-2)


Genetic diversity of Lactobacillus reuteri isolated from intestines
Author:
  • Zhongjie Yu

    Zhongjie Yu

    Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia Autonomous Region, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Jie Zhao

    Jie Zhao

    Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia Autonomous Region, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Yuqin Song

    Yuqin Song

    Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia Autonomous Region, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Zhihong Sun

    Zhihong Sun

    Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia Autonomous Region, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    动物体内定殖着丰富且多样的细菌,其对宿主的健康发挥着举足轻重的作用。罗伊氏乳杆菌(Lactobacillus reuteri)是存在于动物肠道中的益生菌,是研究肠道菌群与宿主进化关系的模式菌种。[目的]以下载自NCBI的分离自猪、家禽类、人类、啮齿类动物的116株L. reuteri和分离自内蒙古锡林郭勒牛、羊和马肠道中的16株L. reuteri为研究对象,解析L. reuteri不同分离株的遗传多样性和宿主特异性,为L. reuteri的开发利用提供理论依据。[方法]利用MLST技术,以ddlpktleuS、gyrB、dltA、rpoA、recA共7个看家基因为研究靶点,对L.reuteri分离株遗传多样性进行研究,推演分离株与宿主生境的进化关系。[结果]132株L.reuteri共划分为63个序列型,6个克隆复合体。等位基因序列重组分析发现,在L. reuteri的进化中发生了个别的重组事件,eBURST、MSTree分析表明不同分离源的L. reuteri分离株经历了不同的进化过程,系统发育分析表明132株L. reuteri来自5个Clusters且与分离源表现出较强的相关性。[结论]本研究利用MLST技术完成了132株L. reuteri肠道分离株的遗传多样性分析,利用MSTree、系统发育等群体结构分析,发现不同分离源菌株有着高度的宿主特异性,表明L. reuteri为适应不同生存环境经历了不同的进化过程。

    Abstract:

    Thousands of bacteria are colonized in the intestinal tract of animals. Lactobacillus reuteri is a probiotic in animal gut and model strain for studying the evolutionary relationship between gut microbiota and host. [Objective] To study genetic diversity and host specificity of different isolates of L. reuteri, we analyzed 132 strains of L. reuteri including 116 strains isolated from human, poultry, rodents and pigs downloaded from NCBI database and 16 strains isolated from cow, sheep and horse in Inner Mongolia. [Methods] Seven housekeeping genes including ddl, pkt, leuS, gyrB, dltA, rpoA, and recA were used as targets in MLST (multilocus sequence typing) technology to study the genetic diversity of 132 L. reuteri and evolutionary relationship between strains and host habitats. [Results] All 132 strains of L. reuteri were assigned into 63 STs and 6 clonal complexes. Recombination analysis revealed that individual recombination events occurred during the evolution of L. reuteri. The eBURST and MSTree analysis showed that L. reuteri from different sources experienced distinct evolutionary processes. The 132 L. reuteri isolates were classified into 5 clusters by phylogenetic analysis, according to their correlation with the sources. [Conclusion] L. reuteri from different sources had high host specificity, indicating that L. reuteri may experience different evolutionary processes to adapt the distinct living environments.

    参考文献
    [1] Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science, 2001, 292(5519):1115-1118.
    [2] Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li JH, Xu JM, Li SC, Li DF, Cao JJ, Wang B, Liang HQ, Zheng HS, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu HM, Yu C, Li ST, Jian M, Zhou Y, Li YR, Zhang XQ, Li SG, Qin N, Yang HM, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285):59-65.
    [3] Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life:implications for health outcomes. Nature Medicine, 2016, 22(7):713-722.
    [4] Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A. The gut microbiota and host health:a new clinical frontier. Gut, 2016, 65(2):330-339.
    [5] Bilhère E, Lucas PM, Claisse O, Lonvaud-Funel A. Multilocus sequence typing of Oenococcus oeni:detection of two subpopulations shaped by intergenic recombination. Applied and Environmental Microbiology, 2009, 75(5):1291-300.
    [6] Jost BH, Trinh HT, Songer JG. Clonal relationships among Clostridium perfringens of porcine origin as determined by multilocus sequence typing. Veterinary Microbiology, 2006, 116(1/3):158-165.
    [7] Ventura M, Canchaya C, Del Casale A, Dellaglio F, Neviani E, Fitzgerald GF, van Sinderen D. Analysis of bifidobacterial evolution using a multilocus approach. International Journal of Systematic and Evolutionary Microbiology, 2006, 56:2783-2792.
    [8] Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou JJ, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. Multilocus sequence typing:a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(6):3140-3145.
    [9] de Las Rivas B, Marcobal Á, Muñoz R. Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Applied and Environmental Microbiology, 2004, 70(12):7210-7219.
    [10] Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. Journal of Physiology, 2009, 587:4153-4158.
    [11] Wang RF, Cao WW, Cerniglia CE. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation. International Journal of Systematic Bacteriology, 1996, 46(1):341-343.
    [12] Savino F, Pelle E, Palumeri E, Oggero R, Miniero R. Lactobacillus reuteri (American Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile colic:a prospective randomized study. Pediatrics, 2007, 119(1):e124-e130.
    [13] Weizman Z, Asli G, Alsheikh A. Effect of a probiotic infant formula on infections in child care centers:comparison of two probiotic agents. Pediatrics, 2005, 115(1):5-9.
    [14] Chen FY, Lee MT, Huang HW. Sigmoidal concentration dependence of antimicrobial peptide activities:a case study on alamethicin. Biophysical Journal, 2002, 82(2):908-914.
    [15] Reuter G. The Lactobacillus and Bifidobacterium microflora of the human intestine:composition and succession. Curr Issues Intest Microbiol, 2001, 2(2):43-53.
    [16] Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN, Roos S, Walter J. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. The Isme Journal, 2010, 4(3):377-387.
    [17] Jordan IK, Rogozin IB, Wolf YI, Koonin EV. Microevolutionary genomics of bacteria. Theoretical Population Biology, 2002, 61(4):435-447.
    [18] Wu R, Wang LP, Wang JC, Li HP, Menghe B, Wu JR, Guo MR, Zhang HP. Isolation and preliminary probiotic selection of lactobacilli from koumiss in Inner Mongolia. Journal of Basic Microbiology, 2009, 49(3):318-326.
    [19] Haubold B, Hudson RR. LIAN 3.0:detecting linkage disequilibrium in multilocus data. Bioinformatics, 2000, 16(9):847-848.
    [20] Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 1993, 42(2):182-192.
    [21] Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 2006, 23(2):254-267.
    [22] Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST:inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. Journal of Bacteriology, 2004, 186(5):1518-1530.
    [23] Picozzi C, Bonacina G, Vigentini I, Foschino R. Genetic diversity in Italian Lactobacillus sanfranciscensis strains assessed by multilocus sequence typing and pulsed-field gel electrophoresis analyses. Microbiology, 2010, 156(7):2035-2045.
    [24] Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics, 2008, 42:165-190.
    [25] Linz B, Balloux F, Moodley Y, Manica A, Liu H, Roumagnac P, Falush D, Stamer C, Prugnolle F, van der Merwe SW, Yamaoka Y, Graham DY, Perez-Trallero E, Wadstrom T, Suerbaum S, Achtman M. An African origin for the intimate association between humans and Helicobacter pylori. Nature, 2007, 445(7130):915-918.
    [26] Cui YJ, Yu C, Yan YF, Li DF, Li YJ, Jombart T, Weinert LA, Wang ZY, Guo ZB, Xu LZ, Zhang YJ, Zheng HC, Qin N, Xiao X, Wu MS, Wang XY, Zhou DS, Qi ZZ, Du ZM, Wu HL, Yang XW, Cao HZ, Wang H, Wang J, Yao SS, Rakin A, Li YR, Falush D, Balloux F, Achtman M, Song YJ, Wang J, Yang RF. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2):577-582.
    [27] Diancourt L, Passet V, Chervaux C, Garault P, Smokvina T, Brisse S. Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Applied and Environmental Microbiology, 2007, 73(20):6601-6611.
    [28] Song YQ, Sun ZH, Guo CY, Wu YR, Liu WJ, Yu J, Menghe B, Yang RF, Zhang HP. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods. Scientific Reports, 2016, 6:22704.
    [29] Moss WW, Hendrickson Jr JA. Numerical taxonomy. Annual Review of Entomology, 1973, 18:227-258.
    [30] Qi B, Han M. Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase. Cell, 2018, 175(2):571-582.e11.
    [31] Sun ZH, Liu WJ, Song YQ, Xu HY, Yu J, Bilige M, Zhang HP, Chen YF. Population structure of Lactobacillus helveticus isolates from naturally fermented dairy products based on multilocus sequence typing. Journal of Dairy Science, 2015, 98(5):2962-2972.
    [32] Yu J, Zhao J, Song YQ, Zhang JC, Yu ZJ, Zhang HP, Sun ZH. Comparative genomics of the herbivore gut symbiont Lactobacillus reuteri reveals genetic diversity and lifestyle adaptation. Frontiers in Microbiology, 2018, 9:1151.
    [33] Schreiber O, Petersson J, Phillipson M, Perry M, Roos S, Holm L. Lactobacillus reuteri prevents colitis by reducing P-selectin-associated leukocyte-and platelet-endothelial cell interactions. American Journal of Physiology. Gastrointestinal and Liver Physiology, 2009, 296(3):G534-G542.
    [34] Walter J. Ecological role of lactobacilli in the gastrointestinal tract:implications for fundamental and biomedical research. Applied and Environmental Microbiology, 2008, 74(16):4985-4996.
    [35] Savage DC. Associations and physiological interactions of indigenous microorganisms and gastrointestinal epithelia. The American Journal of Clinical Nutrition, 1972, 25(12):1372-1379.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

余中节,赵洁,宋宇琴,孙志宏. 罗伊氏乳杆菌肠道分离株的遗传多样性研究[J]. 微生物学报, 2019, 59(9): 1786-1797

复制
分享
文章指标
  • 点击次数:1507
  • 下载次数: 1900
  • HTML阅读次数: 2569
  • 引用次数: 0
历史
  • 收稿日期:2018-08-28
  • 最后修改日期:2019-02-21
  • 在线发布日期: 2019-08-29
文章二维码