蠼螋肠道中碱性内切葡聚糖酶基因的克隆表达及功能分析
作者:
基金项目:

国家自然科学基金(31770138,31570120);河南省高校科技创新人才支持计划(17HASTIT041);南阳师范学院研究生创新基金(2018CX015,2018CX004)


Cloning, expression and function of an alkaline resistance endo-glucanase gene isolated from guts of earwig
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]从蠼螋肠道细菌菌株Q5中获得一个新型耐碱纤维素酶基因,通过异源表达、酶学性质及功能分析,旨在为以后进一步研究开发高温碱性纤维素酶提供一些理论参考。[方法]采用刚果红平板初筛法,从河南南阳宝天曼国家级自然保护区落叶堆下的昆虫蠼螋肠道中,获得具有分泌较高活性碱性纤维素酶的细菌菌株。基于该菌株的形态学、生理学及16S rRNA序列特征等对高活性菌株进行分类鉴定。并通过设计简并引物,从高活性菌株中克隆出该菌株的纤维素酶基因,并进行序列分析,并导入大肠杆菌BL21中表达。[结果]获得1株具有分泌较高活性碱性内切葡聚糖酶的细菌菌株Q5,经鉴定为甲基营养型芽孢杆菌,进一步从Q5菌株中成功克隆出该菌株的一个全长1500 bp的内切葡聚糖酶基因(GenBank KR067575),在NCBI比对后发现该基因的氨基酸序列与芽孢杆菌菌株LM 4-2的耐碱性β-1,4-内切葡聚糖酶基因(AKE23721.1)有98%的同源性。重组菌经优化培养,细胞破碎后上清液中的酶活力可达3.46 U/mL,是出发菌株Q5(2.05 U/mL)的1.69倍。经正交实验优化后的酶活力为4.99 U/mL。酶学性质研究表明:该酶的最适反应温度与pH值分别为50℃与pH 8.5,在pH 8.0和9.0保温48 h,其酶活力仍然维持到最高酶活的82%和81%;该酶在50℃以下较稳定,60℃以上酶活迅速降低。10 mmol/L的Ca2+和Mg2+对酶的活性有明显促进作用,重组酶Ega5KmVmax分别是2.217 mol/mL和9.606μmol/(min·L)。该重组酶对棉花黄萎病病原菌大丽轮枝菌具有显著抑制作用。[结论]本文首次从蠼螋肠道中筛选到了一株产碱性内切葡聚糖酶的细菌菌株并从中克隆出了一个碱性纤维素酶基因,为该酶在碱性条件的应用奠定了理论基础。

    Abstract:

    [Objective] To provide some theoretical references for further research and development of alkaline cellulase via obtaining a novel alkaline resistance cellulase in bacteria from intestines of earwig, and heterologously express, characterize the functions of the enzyme. [Methods] First, we isolated the bacterial strains from earwig gut samples in Nanyang Baotianman National Reserve Area, Henan province, China by primarily screening according to Congo red plate methods. Then, we obtained and identified the bacterial strains with high alkaline cellulase activities by phenotypic and genotypic characteristics. We designed degenerate primes according to the known endoglucanase gene sequences in GenBank to carry out PCR, analyzed the cloned sequence, and expressed the enzyme in Escherichia coli BL21. [Results] We obtained one bacterial strain with high alkaline cellulase activities named strain Q5. The bacterium was classified to be Bacillus methylotrophicus. The full length of a cellulase gene cDNA (1500 bp) (GenBank KR067575) coding region was successfully cloned. The homogeneous analysis demonstrated that the deduced amino acid of the gene showed 98% similarities with the alkaline β-1,4 endoglycosidase from Bacillus sp. 2190 (ALE32753.1). The activity of the recombined endoglucanase was 3.46 U/mL, which was 1.69 times higher than that of the wild Bacillus methylotrophicus Q5 (2.05 U/mL). The highest cellulase activity reached 4.99 U/mL after orthogonal experiment. The properties of the recombined enzyme were determined. The optimum temperature and pH value were 50℃ and pH 8.5, respectively. The enzyme maintained over 80% of the original enzyme activity at pH 8.0 and pH 9.0 after incubated at 50℃ for 48 h. The enzyme was stable below 50℃ and the activity decreased sharply above 60℃. The activity of this enzyme was activated by 10 mmol/L Ca2+和Mg2+. The values of Km and Vmax were 2.217 mol/mL and 9.606 μmol/(min·L), respectively. The enzyme showed obviously inhibiting the growth of the cotton pathogenic fungi Verticillum dahliae. [Conclusion] It was the first time we got an alkaline resistance endoglucanasegene from Bacillus methylotrophicus isolated from guts of earwig. Our findings will lay a theoretical foundation for the application in alkaline environments.

    参考文献
    [1] Apte AA, Senger RS, Fong SS. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis. Bioengineered, 2014, 5(5):243-253.
    [2] Zhou TC. Cloning and expression of an endoglucanase gene from Bacillus thermoliquefaciens. Master Dissertation of Nanjing Forestry University, 2008. (in Chinese)周潭澈. 嗜热液化芽孢杆菌内切葡聚糖酶基因的克隆和表达. 南京林业大学硕士学位论文, 2008.
    [3] Li ZH, Yao GS, Wu RM, Gao LW, Kan QB, Liu M, Yang P, Liu GD, Qin YQ, Song X, Zhong YH, Fang X, Qu YB. Synergistic and dose-controlled regulation of cellulase gene expression in Penicillium oxalicum. PLoS Genetics, 2015, 11(9):e1005509.
    [4] Xu JT, Zhao GL, Kou YB, Zhang WX, Zhou QX, Chen GJ, Liu WF. Intracellular β-Glucosidases CEL1a and CEL1b are essential for cellulase induction on lactose in Trichoderma reesei. Eukaryotic Cell, 2014, 13(8):1001-1013.
    [5] Wu Q, Yuan L, Lu FP, Shen MH, Liu CY, Bai YC. Screening and identification of an alkaline cellulase-producing strain. Biotechnology Bulletin, 2010, (9):205-209. (in Chinese)吴琼, 苑琳, 路福平, 申明华, 刘纯燕, 白宇辰. 高碱性纤维素酶产生菌的筛选及鉴定. 生物技术通报, 2010, (9):205-209.
    [6] Xu WQ, Gao HL, Huang J, Wu ZR, Yang XX. The progress of the alkaline cellulase that use in laundry detergents. Microbiology China, 2002, 29(6):90-94. (in Chinese)徐韦华卿, 高红亮, 黄静, 吴自荣, 杨雪霞. 洗涤剂用碱性纤维素酶的研究进展. 微生物学通报, 2002, 29(6):90-94.
    [7] Liu G, Yu SW, Kong S, Xing M. Recent advances of alkaline cellulase and its application. Chinese Journal of Bioprocess Engineering, 2005, 3(2):9-14. (in Chinese)刘刚, 余少文, 孔舒, 邢苗. 碱性纤维素酶及其应用的研究进展. 生物加工过程, 2005, 3(2):9-14.
    [8] Li ZL, Wang WW, Ren P, Zhao WJ, Zhang HY, Chen WF. Screening of facultative anaerobic strain producing alkaline cellulase and study on enzymatic properties. Microbiology China, 2008, 35(6):851-854. (in Chinese)李忠玲, 王卫卫, 任平, 赵文娟, 张红艳, 陈卫锋. 产碱性纤维素酶兼性厌氧菌株的筛选和酶学性质的初步研究. 微生物学通报, 2008, 35(6):851-854.
    [9] Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc HP, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, Duarte da Rocha W, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, Gama de Oliveira E, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Leponce M. Arthropod diversity in a tropical forest. Science, 2012, 338(6113):481-1484.
    [10] Mei C, Fan S, Yang H. The strategies of isolation of insect gut microorganisms. Acta Microbiologica Sinica, 2018, 58(6):985-994. (in Chinese) 梅承, 范硕, 杨红. 昆虫肠道微生物分离培养策略及研究进展. 微生物学报, 2018, 58(6):985-994.
    [11] Li DH, Wang Y, Yang H. Gut microbiome of wood-feeding termites. Acta Microbiologica Sinica, 2017, 57(6):876-884. (in Chinese)李丹红, 王誉, 杨红. 高效降解木质纤维素的白蚁肠道微生物组. 微生物学报, 2017, 57(6):876-884.
    [12] Zhang ZY, Sheng P, Huang SW, Zhao YS, Zhang HY. Diversity, function and application of insect gut microbiota. Amino Acids and Biotic Resources, 2017, 39(4):231-239. (in Chinese)张振宇, 圣平, 黄胜威, 赵永顺, 张宏宇. 昆虫肠道微生物的多样性、功能及应用. 生物资源, 2017, 39(4):231-239.
    [13] Yang J, Yang Y, Wu WM, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 2014, 48(23):13776-13784.
    [14] Whitten MAM, Facey PD, Del Sol R, Fernández-Martínez LT, Evans MC, Mitchell JJ, Bodger OG, Dyson PJ. Symbiont-mediated RNA interference in insects. Proceedings of the Royal Society B:Biological Sciences, 2016, 283(1825):20160042.
    [15] Liang XL, Sun C, Chen BS, Du KQ, Yu T, Luang-In V, Lu XM, Shao YQ. Insect symbionts as valuable grist for the biotechnological mill:an alkaliphilic silkworm gut bacterium for efficient lactic acid production. Applied Microbiology and Biotechnology, 2018, 102(11):4951-4962.
    [16] Gaur R, Tiwari S. Isolation, production, purification and characterization of an organic-solvent-thermostable alkalophilic cellulase from Bacillus vallismortis RG-07. BMC Biotechnology, 2015, 15:19.
    [17] Jung KH, Chun YC, Lee JC, Kim JH, Yoon KH. Cloning and expression of a Bacillus sp. 79-23 cellulase gene. Biotechnology Letters, 1996, 18(9):1077-1082.
    [18] Khanongnuch C, Ooi T, Kinoshita S. Cloning and nucleotide sequence of β-mannanase and cellulase genes from Bacillus sp. 5H. World Journal of Microbiology and Biotechnology, 1999, 15(2):249-258.
    [19] Pan HB. High activty cellulase engineering strain construction by the method of DNA recombinantion. Master Dissertation of Anhui Polytechnic University, 2010. (in Chinese)潘海波. 利用DNA体外重组技术构建高活性纤维素酶基因工程菌. 安徽工程大学硕士学位论文, 2010.
    [20] Wu SS. Screening of high-yield cellulase strains, identification and cut inside glucanase build high expression genetic engineering bacteria. Master Dissertation of Henan Normal University, 2016. (in Chinese)吴珊珊. 高产纤维素酶菌株的筛选、鉴定及内切葡聚糖酶高表达基因工程菌的构建. 河南师范大学硕士学位论文, 2016.
    [21] Xu P, Li WJ, Xu LH, Jiang CL. A microwave-based method for genomic DNA extraction from Actinomycetes. Microbiology China, 2003, 30(4):82-84. (in Chinese)徐平, 李文均, 徐丽华, 姜成林. 微波法快速提取放线菌基因组DNA. 微生物学通报, 2003, 30(4):82-84.
    [22] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24):4876-4882.
    [23] Kumar S, Tamura K, Nei M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 2004, 5(2):150-163.
    [24] Ausubel FM, Brent R, Kingston RE, Moore DD, Seldman JS, Smith JA, Struhl K. Short protocols in molecular biology. Yan ZY, Wang HL, trans. Beijing:Science Press, 1998:23-169. (in Chinese)奥斯伯FM, 布伦特R, 金斯顿RE, 穆尔DD, 塞德曼JG, 史密斯JA, 斯特拉尔K. 精编分子生物学实验指南. 颜子颖, 王海林, 译. 北京:科学出版社, 1998:23-169.
    [25] Xu B, Chen H, Han XY, Guan XY, Wu Q. Purification and properties of cellulase from Bacillus subtilis C-36. Journal of Sichuan Agricultural University, 2006, 24(4):398-401. (in Chinese)胥兵, 陈惠, 韩学易, 官兴颖, 吴琦. 枯草芽孢杆菌C-36纤维素酶的纯化及酶学性质. 四川农业大学学报, 2006, 24(4):398-401.
    [26] Li SJ, Liang M, Zhu TH, Yang CQ. Selection of an antagonistic bacterium against Arthrinium phaeospermum and its antibacterial protein analysis. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(6):27-32. (in Chinese)李姝江, 梁漫, 朱天辉, 杨长青. 杂交竹梢枯病拮抗菌的筛选及抗菌蛋白分析. 南京林业大学学报(自然科学版), 2013, 37(6):27-32.
    [27] Jin LR, Wan P, Huang W. Biocontrol effect on cotton Verticillium wilt and identification of endophytic bacterium HB3S-20 from cotton. Journal of Henan Agricultural Sciences, 2018, 47(3):70-75. (in Chinese)金利容, 万鹏, 黄薇. 棉花内生细菌HB3S-20对棉花黄萎病的生防效果评估及其鉴定. 河南农业科学, 2018, 47(3):70-75.
    [28] Cai PL, Wang B, Ji JX, Jiang YS, Wan L, Tian CG, Ma YH. The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa. Journal of Biological Chemistry, 2015, 290(2):788-796.
    [29] Wang MM. Expression of alkali-tolerant cellulase and mechanism of enzymatic modification. Doctor Dissertation of Shandong University, 2017. (in Chinese)王美美. 耐碱性纤维素酶的表达及其对纸浆改性和机制研究. 山东大学博士学位论文, 2017.
    [30] Xu QQ, Wang YM, Zhang ZM, Zhuo L, Yin LS, Guo L, Du ZJ. Isolation and identification of marine bacteria Bacillus sp. HN07 and characterization of its alkaline cellulase. Industrial Microbiology, 2009, 39(4):55-59. (in Chinese)徐庆强, 王延明, 张志明, 卓跞, 殷丽莎, 郭琳, 杜宗军. 海洋细菌Bacillus sp. HN07的分离鉴定及所产碱性纤维素酶性质研究. 工业微生物, 2009, 39(4):55-59.
    [31] Liu ZX. Impacts of China's cotton subsidies and price supports on world cotton market. Issues in Agricultural Economy, 2014, 35(8):33-39. (in Chinese)刘志雄. 我国棉花国内支持政策对世界棉花市场影响研究. 农业经济问题, 2014, 35(8):33-39.
    [32] Zhu HQ, Li ZF, Feng ZL, Feng HG, Wei F, Zhao LH, Shi YQ, Liu SC, Zhou JL. Overview of cotton Verticillium wilt research over the past decade in China and its prospect in future. Cotton Science, 2017, 29(S1):37-50. (in Chinese)朱荷琴, 李志芳, 冯自力, 冯鸿杰, 魏锋, 赵丽红, 师勇强, 刘世超, 周京龙. 我国棉花黄萎病研究十年回顾及展望. 棉花学报, 2017, 29(S1):37-50.
    [33] Li CW, Ding JP, Liu DM, Zhou RY, Li FG. Research progress on cotton Verticillium wilt and resistance breeding. Cotton Science, 2008, 20(5):385-390. (in Chinese)李成伟, 丁锦平, 刘冬梅, 周瑞阳, 李付广. 棉花黄萎病及抗病育种研究进展. 棉花学报, 2008, 20(5):385-390.
    [34] Hadwiger LA, Druffel K, Humann JL, Schroeder BK. Nuclease released by Verticillium dahliae is a signal for non-host resistance. Plant Science, 2013, 201-202:98-107.
    [35] Shi L, Hou ZA, Yin FH. Research and application of biological pesticides in the control of Verticillium wilt of cotton. Xinjiang Farmland Reclamation Science & Technology, 2017, 40(4):25-29. (in Chinese)石磊, 侯振安, 尹飞虎. 生物农药在棉花黄萎病防治上的研究与应用. 新疆农垦科技, 2017, 40(4):25-29.
    [36] Prapagdee B, Kuekulvong C, Mongkolsuk S. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences, 2008, 4(5):330-337.
    [37] Xu T, Zhu TH, Li SJ. β-1,3-1,4-glucanase gene from Bacillus velezensis ZJ20 exerts antifungal effect on plant pathogenic fungi. World Journal of Microbiology and Biotechnology, 2016, 32(2):26.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈俊梅,李文鹏,赵素雅,黄冰纷,王博文,惠丰立,尹晓燕,牛秋红. 蠼螋肠道中碱性内切葡聚糖酶基因的克隆表达及功能分析[J]. 微生物学报, 2019, 59(9): 1798-1812

复制
分享
文章指标
  • 点击次数:1083
  • 下载次数: 1787
  • HTML阅读次数: 1608
  • 引用次数: 0
历史
  • 收稿日期:2018-12-04
  • 最后修改日期:2019-03-11
  • 在线发布日期: 2019-08-29
文章二维码