dlt操纵子赋予苏云金芽胞杆菌对阳离子抗菌肽的抗性和对昆虫的毒力
作者:
基金项目:

中国国家基础研究计划(2013CB127504);湖南省自然科学基金(2015JJ2098);湖南省教育厅科研基金(17A132)


The dlt operon in Bacillus thuringiensis confers resistance to cationic antimicrobial peptides and virulence to insect
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]革兰氏阳性菌中的dlt操纵子编码细胞壁中磷壁酸发生D-丙氨酰化修饰所必需的酶。D-丙氨酰化使细胞表面产生正电荷,并因此排斥带正电的分子,例如阳离子抗菌肽,从而赋予对宿主的抗性。本文中,我们研究了dlt操纵子对苏云金芽胞杆菌表型性状的影响及在对昆虫毒力中发挥的作用。[方法]通过同源重组构建了ΔdltABt基因缺失突变株,并对其进行形态学观察、表面电荷差异分析、抗逆性分析和毒力测定。[结果]结果表明,dltA的失活显著降低了细胞表面的净负电荷,对阳离子抗菌肽(多粘菌素B和溶菌酶)的抗性和碱耐受性显著下降。同时,ΔdltABt的生长曲线发生明显改变,细胞表面粗糙且形状不规则,生物膜形成减少和群游运动能力增强。此外,dltA的失活降低了对昆虫中肠上皮细胞的粘附能力,并减弱了对家蚕的毒力。[结论]研究结果表明,dlt操纵子介导的磷壁酸发生D-丙氨酰化修饰与苏云金芽胞杆菌的许多表型性状密切相关,并且在苏云金芽胞杆菌对昆虫的致病性及抵抗昆虫体液免疫保护中具有重要作用。

    Abstract:

    [Objective] The dlt operon in Gram-positive bacteria encodes enzymes that are necessary for the modification of D-alanylation of teichoic acids in cell wall. D-alanylation generates net positive charge on cell surface and, as a consequence, repulses the positively charged molecules, such as cationic antimicrobial peptides, thereby confers resistance to host animal. Here, we investigated the impact of dlt operon on phenotypic traits of Bacillus thuringiensis and role in virulence to insect. [Methods] We constructed the loss-of-function mutant of dlt by homologous recombination technique, and performed its morphological observation, surface charge difference analysis, stress resistance analysis and cell experiment.[Results] The results revealed that inactivation of dltA significantly decreased net negative charge of cell wall, drastically impaired the resistance of Bacillus thuringiensis to cationic antimicrobial peptides (polymyxin B and lysozyme) and alkaline. ΔdltABt mutant displayed an obviously altered profile of growth curve, irregular shape and rough surface of cell, decreased biofilm formation and increased swarming motility. Moreover, inactivation of dltA significantly decreased adhesion ability to mid-gut epithelial cell of insect, and greatly attenuated virulence to Bombyx mori. [Conclusion] These findings provide evidence that D-alanylation of TAs mediated by dlt operon is closely correlated to many phenotypic traits of Bt, and has putative roles in the pathogenicity of B. thuringiensis to insect and the protection of B. thuringiensis from insect humoral immunity.

    参考文献
    [1] Neuhaus FC, Baddiley J. A continuum of anionic charge:structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiology and Molecular Biology Reviews, 2003, 67(4):686-723.
    [2] Weidenmaier C, Peschel A. Teichoic acids and related cell-wall glycopolymers in gram-positive physiology and host interactions. Nature Reviews Microbiology, 2008, 6(4):276-287.
    [3] Peschel A. How do bacteria resist human antimicrobial peptides? Trends in Microbiology, 2002, 10(4):179-186.
    [4] Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y. D-alanylation of lipoteichoic acids confers resistance to cationic peptides in group B Streptococcus by increasing the cell wall density. PLoS Pathogens, 2012, 8(9):e1002891.
    [5] Abi Khattar Z, Rejasse A, Destoumieux-Garzón D, Escoubas JM, Sanchis V, Lereclus D, Givaudan A, Kallassy M, Nielsen-Leroux C, Gaudriault S. The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. Journal of Bacteriology, 2009, 191(22):7063-7073.
    [6] Pandin C, Caroff M, Condemine G. Antimicrobial peptide resistance genes in the plant pathogen Dickeya dadantii. Applied and Environmental Microbiology, 2016, 82(21):6423-6430.
    [7] Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizet V. D-alanylation of teichoic acids promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. Journal of Bacteriology, 2005, 187(19):6719-6725.
    [8] Schneewind O, Missiakas D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. Journal of Bacteriology, 2014, 196(6):1133-1142.
    [9] Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. Journal of Biological Chemistry, 1995, 270(26):15598-15606.
    [10] Reichmann NT, Cassona CP, Gründling A. Revised mechanism of D-alanine incorporation into cell wall polymers in gram-positive bacteria. Microbiology, 2013, 159(9):1868-1877.
    [11] Debabov DV, Kiriukhin MY, Neuhaus FC. Biosynthesis of lipoteichoic acid in Lactobacillus rhamnosus:role of DltD in D-alanylation. Journal of Bacteriology, 2000, 182(10):2855-2864.
    [12] Koch HU, Döker R, Fischer W. Maintenance of D-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus. Journal of Bacteriology, 1985, 164(3):1211-1217.
    [13] Kamar R, Réjasse A, Jéhanno I, Attieh Z, Courtin P, Chapot-Chartier MP, Nielsen-Leroux C, Lereclus D, El Chamy L, Kallassy M, Sanchis-Borja V. DltX of Bacillus thuringiensis is essential for D-alanylation of teichoic acids and resistance to antimicrobial response in insects. Frontiers in Microbiology, 2017, 8:1437.
    [14] Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Molecular Microbiology, 2002, 43(1):1-14.
    [15] Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J. Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infection and Immunity, 2006, 74(7):4164-4171.
    [16] McBride SM, Sonenshein AL. The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology, 2011, 157(5):1457-1465.
    [17] Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 2003, 55(3):27-55.
    [18] Poyart C, Pellegrini E, Marceau M, Baptista M, Jaubert F, Lamy MC, Trieu-Cuot P. Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Molecular Microbiology, 2003, 49(6):1615-1625.
    [19] Kristian SA, Lauth X, Nizet V, Goetz F, Neumeister B, Peschel A, Landmann R. Alanylation of teichoic acids protects Staphylococcus aureus against toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. The Journal of Infectious Diseases, 2003, 188(3):414-423.
    [20] Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nature Medicine, 2004, 10(3):243-245.
    [21] Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 1998, 62(3):775-806.
    [22] Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensis insecticidal three-domain Cry toxins:mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 2013, 37(1):3-22.
    [23] Vachon V, Laprade R, Schwartz JL. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins:a critical review. Journal of Invertebrate Pathology, 2012, 111(1):1-12.
    [24] Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annual Review of Immunology, 2007, 25:697-743.
    [25] Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects; structure and function. Developmental & Comparative Immunology, 1999, 23(4-5):329-344.
    [26] He J, Shao XH, Zheng HJ, Li MS, Wang JP, Zhang QY, Li L, Liu ZD, Sun M, Wang SY, Yu ZN. Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. Journal of Bacteriology, 2010, 192(15):4074-4075.
    [27] Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains:nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 1985, 33(1):103-119.
    [28] Arantes O, Lereclus D. Construction of cloning vectors for Bacillus thuringiensis. Gene, 1991, 108(1):115-119.
    [29] Yu ZQ, Bai PS, Ye WX, Zhang FJ, Ruan LF, Yu ZN, Sun M. A novel negative regulatory factor for nematicidal cry protein gene expression in Bacillus thuringiensis. Journal of Microbiology and Biotechnology, 2008, 18(6):1033-1039.
    [30] de Souza MT, Lecadet MM, Lereclus D. Full expression of the cryⅢA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription. Journal of Bacteriology, 1993, 175(10):2952-2960.
    [31] Chan KG, Mayer M, Davis EM, Halperin SA, Lin TJ, Lee SF. Role of D-alanylation of Streptococcus gordonii lipoteichoic acid in innate and adaptive immunity. Infection and Immunity, 2007, 75(6):3033-3042.
    [32] O'Toole GA. Microtiter dish biofilm formation assay. Journal of Visualized Experiments, 2011, (47):2437.
    [33] Gills A, Dupres V, Mahillon J, Dufrêne YF. Atomic force microscopy:a powerful tool for studying bacterial swarming motility. Micron, 2012, 43(12):1304-1311.
    [34] Zhang DY, Ampasala DR, Zheng SC, Cusson M, Cheng XW, Krell PJ, Feng QL. Molecular cloning and characterization of a putative nuclear DEAD box RNA helicase in the spruce budworm, Choristoneura fumiferana. Archives of Insect Biochemistry and Physiology, 2006, 61(4):209-219.
    [35] Driever W, Rangini Z. Characterization of a cell line derived from zebrafish (Brachydanio rerio) embryos. In vitro Cellular & Developmental Biology-Animal, 1993, 29A(9):749-754.
    [36] Hamamoto H, Kurokawa K, Kaito C, Kamura K, Razanajatovo IM, Kusuhara H, Santa T, Sekimizu K. Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrobial Agents and Chemotherapy, 2004, 48(3):774-779.
    [37] Palumbo E, Deghorain M, Cocconcelli PS, Kleerebezem M, Geyer A, Hartung T, Morath S, Hols P. D-alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. Journal of Bacteriology, 2006, 188(10):3709-3715.
    [38] Wydau-Dematteis S, Louis M, Zahr N, Lai-Kuen R, Saubaméa B, Butel MJ, Pons JL. The functional dlt operon of Clostridium butyricum controls the D-alanylation of cell wall components and influences cell septation and vancomycin-induced lysis. Anaerobe, 2015, 35(Part B):105-114.
    [39] Giaouris E, Briandet R, Meyrand M, Courtin P, Chapot-Chartier MP. Variations in the degree of D-alanylation of teichoic acids in Lactococcus lactis alter resistance to cationic antimicrobials but have no effect on bacterial surface hydrophobicity and charge. Applied and Environmental Microbiology, 2008, 74(15):4764-4767.
    [40] Lopez D, Vlamakis H, Kolter R. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiology Reviews, 2009, 33(1):152-163.
    [41] López D, Kolter R. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiology Reviews, 2010, 34(2):134-149.
    [42] Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, Michiels J. Living on a surface:swarming and biofilm formation. Trends in Microbiology, 2008, 16(10):496-506.
    [43] Harshey RM. Bacterial motility on a surface:many ways to a common goal. Annual Review of Microbiology, 2003, 57:249-273.
    [44] O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annual Review of Microbiology, 2000, 54:49-79.
    [45] Gross M, Cramton SE, Götz F, Peschel A. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infection and Immunity, 2001, 69(5):3423-3426.
    [46] Walter J, Loach DM, Alqumber M, Rockel C, Hermann C, Pfitzenmaier M, Tannock GW. D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract. Environmental Microbiology, 2007, 9(7):1750-1760.
    [47] Nilsson M, Rybtke M, Givskov M, Høiby N, Twetman S, Tolker-Nielsen T. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms. International Journal of Antimicrobial Agents, 2016, 48(3):298-304.
    [48] Von Eiff C, Heilmann C, Peters G. New aspects in the molecular basis of polymer-associated infections due to staphylococci. European Journal of Clinical Microbiology and Infectious Diseases, 1999, 18(12):843-846.
    [49] Salamitou S, Ramisse F, Brehélin M, Bourguet D, Gilois N, Gominet M, Hernandez E, Lereclus D. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology, 2000, 146(11):2825-2832.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邬欢,王海文,朱丽,魏旭艳,王兵,宋春旭,余子全. dlt操纵子赋予苏云金芽胞杆菌对阳离子抗菌肽的抗性和对昆虫的毒力[J]. 微生物学报, 2019, 59(10): 1897-1914

复制
分享
文章指标
  • 点击次数:1013
  • 下载次数: 1208
  • HTML阅读次数: 1179
  • 引用次数: 0
历史
  • 收稿日期:2018-10-12
  • 最后修改日期:2019-02-13
  • 在线发布日期: 2019-10-10
文章二维码