不同磷、硫及二氧化碳浓度对标志链带藻生长和碳水化合物积累的影响
作者:
基金项目:

国家高技术研究发展计划(2013AA065805);国家自然科学基金(31170337);广东省低碳专项(2011-051);珠海市科技重大项目(PB20041018);珠海市科技攻关项目(PC20081008)


Effects of phosphorus, sulfur and carbon dioxide concentrations on growth and carbohydrate accumulation of Desmodesmus insignis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]为了研究不同磷、硫及二氧化碳浓度对标志链带藻(Desmodesmus insignis)生长与碳水化合物积累的影响,本实验以改良BG11培养基为基础,设计了8种不同初始K2HPO4浓度、8种不同初始MgSO4浓度及4种二氧化碳浓度培养标志链带藻。[方法]采用干重法和苯酚-硫酸法分别测定其生物质浓度与总碳水化合物的含量。[结果]实验结果显示,在高磷浓度(0.460 mmol/L)下生物量达到最高为6.37 g/L,磷浓度为0.230 mmol/L(对照组)时总碳水化合物含量及单位体积产率达到最高,分别为45.40%(%干重)和0.20 g/(L·d)。不同初始MgSO4浓度实验结果显示,高硫浓度有利于标志链带藻生长及碳水化合物的积累,生物量、总碳水化合物含量及单位体积产率分别在硫浓度为1.217 mmol/L、0.609 mmol/L和1.824 mmol/L时达到最高,分别为7.02 g/L、51.6%(%干重)及0.26 g/(L·d)。当二氧化碳浓度为3%(V/V)时,标志链带藻生物量、总碳水化合物含量及单位体积产率均达到最高,分别为6.81 g/L、44.03%和0.20 g/(L·d)。[结论]因此,磷浓度为0.230 mmol/L、硫浓度为1.824 mmol/L和二氧化碳浓度为3%时最有利于标志链带藻生长及碳水化合物的积累。

    Abstract:

    [Objective] To determine the effect of concentrations of P, S and CO2 on the growth and total carbohydrate accumulation of Desmodesmus insignis, the algae were cultivated in modified BG-11 medium containing 8 different initial phosphorus and sulfur concentrations and 4 different carbon dioxide concentrations. [Methods] Biomass and total carbohydrate content were measured by dry weight and phenol-sulfuric acid method, respectively. [Results] The highest biomass concentration reached 6.37 g/L under 0.460 mmol/L K2HPO4 and the maximum content and productivity of carbohydrate was 45.40% of dry weight and 0.20 g/(L·d) under 0.230 mmol/L K2HPO4, respectively. High MgSO4 concentration could promote the growth and carbohydrate accumulation of Desmodesmus insignis. The highest biomass concentration and the maximum content and productivity of carbohydrate were achieved at 1.217 mmol/L, 0.609 mmol/L and 1.824 mmol/L MgSO4, which was 7.02 g/L, 51.60% of dry weight and 0.26 g/(L·d), respectively. In addition, the highest biomass concentration and the maximum content and productivity of carbohydrate were 6.81 g/L, 44.03% and 0.20 g/(L·d) when 3% (V/V) CO2 was used. [Conclusion] Thus, the concentrations of P, S and CO2 which were beneficial to the growth and carbohydrate accumulation were 0.230 mmol/L, 1.824 mmol/L and 3% (V/V), respectively.

    参考文献
    [1] Yao CH, Ai JN, Cao XP, Xue S. Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions. Applied Microbiology and Biotechnology, 2013, 97(13):6099-6110.
    [2] Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 2011, 37(1):52-68.
    [3] Markou G. Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresource Technology, 2012, 116:533-535.
    [4] Markou G, Chatzipavlidis I, Georgakakis D. Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis:improvements through phosphorus limitation process. BioEnergy Research, 2012, 5(4):915-925.
    [5] Jerez CG, Malapascua JR, Sergejevová M, Figueroa FL, Masojídek J. Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta). Marine Biotechnology, 2016, 18(1):24-36.
    [6] Borowitzka MA, Beardall J, Raven JA. The physiology of microalgae. Cham:Springer, 2016:1-673.
    [7] Said HA. Changes in levels of cellular constituents of Dunaliella parva associated with inorganic phosphate depletion. Middle-East Journal of Scientific Research, 2009, 4(2):94-99.
    [8] Yao CH, Ai JN, Cao XP, Xue S, Zhang W. Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresource Technology, 2012, 118:438-444.
    [9] White AL, Melis A. Biochemistry of hydrogen metabolism in Chlamydomonas reinhardtii wild type and a Rubisco-less mutant. International Journal of Hydrogen Energy, 2006, 31(4):455-464.
    [10] Van Den Hende S, Vervaeren H, Boon N. Flue gas compounds and microalgae:(bio-)chemical interactions leading to biotechnological opportunities. Biotechnology Advances, 2012, 30(6):1405-1424.
    [11] Jiang JW, Cheng LH, Xu XH, Zhang L, Chen HL. Intensified technology for microalgal CO2 fixation and conversion from flue gas. Chemical Industry and Engineering Progress, 2014, 33(7):1884-1894. (in Chinese)姜加伟, 程丽华, 徐新华, 张林, 陈欢林. 微藻固定转化烟气CO2强化技术. 化工进展, 2014, 33(7):1884-1894.
    [12] Gifuni I, Olivieri G, Pollio A, Marzocchella A. Identification of an industrial microalgal strain for starch production in biorefinery context:the effect of nitrogen and carbon concentration on starch accumulation. New Biotechnology, 2018, 41:46-54.
    [13] Tang DH, Han W, Li PL, Miao XL, Zhong JJ. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 2011, 102(3):3071-3076.
    [14] Izumo A, Fujiwara S, Oyama Y, Satoh A, Fujita N, Nakamura Y, Tsuzuki M. Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth:Comparison of structure and properties of pyrenoid and stroma starch. Plant Science, 2007, 172(6):1138-1147.
    [15] Wu GX, Huang LD, Gao BY, Li AF, Zhang CW. Effects of different nitrogen sources and concentrations on starch and lipid biosynthesis by Desmodesmus insignis. Acta Microbiologica Sinica, 2016, 56(7):1168-1177. (in Chinese)吴桂秀, 黄罗冬, 高保燕, 李爱芬, 张成武. 不同氮源及其浓度对标志链带藻合成淀粉和油脂的影响. 微生物学报, 2016, 56(7):1168-1177.
    [16] 沈丹丹. 富油及富淀粉微藻培养与奶牛场废水处理相结合的效果研究. 暨南大学硕士学位论文, 2013.
    [17] Brányikova I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vitová M. Microalgae-novel highly efficient starch producers. Biotechnology and Bioengineering, 2011, 108(4):766-776.
    [18] DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3):350-356.
    [19] Wykoff DD, Davies JP, Melis A, Grossman AR. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiology, 1998, 117(1):129-139.
    [20] Rasdi NW, Qin JG. Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. Journal of Applied Phycology, 2015, 27(6):2221-2230.
    [21] Chen AL, Gao BY, Huang LD, Wang FF, Zhang CW. Effects of initial combined concentrations of nutrients on the growth and lipid accumulation of Eustigmatos cf. polyphem. Plant Science Journal, 2018, 36(3):420-430. (in Chinese)陈爱玲, 高保燕, 黄罗冬, 王飞飞, 张成武. 营养盐初始组合浓度对类波氏真眼点藻生长和油脂积累的影响. 植物科学学报, 2018, 36(3):420-430.
    [22] Wu YH, Yu Y, Li X, Hu HY, Su ZF. Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition. Bioresource Technology, 2012, 112:193-198.
    [23] Sigee DC, Bahrami F, Estrada B, Webster RE, Dean AP. The influence of phosphorus availability on carbon allocation and P quota in Scenedesmus subspicatus:a synchrotron-based FTIR analysis. Phycologia, 2007, 46(5):583-592.
    [24] Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates:an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 2012, 96(3):631-645.
    [25] Ji CF, Yu XJ, Chen ZA, Xue S, Legrand J, Zhang W. Effects of nutrient deprivation on biochemical compositions and photo-hydrogen production of Tetraselmis subcordiformis. International Journal of Hydrogen Energy, 2011, 36(10):5817-5821.
    [26] Wang QY, Zhang Y, Li AF, Zhang CW. Effects of sulfur concentration on the photosynthetic physiology and biochemical composition of Scenedesmus acuminatus. Acta Hydrobiologica Sinica, 2017, 41(4):904-913. (in Chinese)王倩雅, 张莹, 李爱芬, 张成武. 硫素营养水平对产油尖状栅藻光合生理及生化组成的影响. 水生生物学报, 2017, 41(4):904-913.
    [27] Zhang LP, Happe T, Melis A. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta, 2002, 214(4):552-561.
    [28] Lari Z, Moradi-kheibari N, Ahmadzadeh H, Abrishamchi P, Moheimani NR, Murry MA. Bioprocess engineering of microalgae to optimize lipid production through nutrient management. Journal of Applied Phycology, 2016, 28(6):3235-3250.
    [29] Harwati TU, Willke T, Vorlop KD. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Bioresource Technology, 2012, 121:54-60.
    [30] de Castro Araújo S, Garcia VMT. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture, 2005, 246(1/4):405-412.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄怡,高保燕,王飞飞,戴晨明,苏敏,张成武. 不同磷、硫及二氧化碳浓度对标志链带藻生长和碳水化合物积累的影响[J]. 微生物学报, 2019, 59(10): 1915-1926

复制
分享
文章指标
  • 点击次数:1100
  • 下载次数: 1201
  • HTML阅读次数: 2073
  • 引用次数: 0
历史
  • 收稿日期:2018-10-12
  • 最后修改日期:2018-12-19
  • 在线发布日期: 2019-10-10
文章二维码