恶臭假单胞菌SJTE-1中转化17β-雌二醇的3-酰基-ACP还原酶的鉴定与功能研究
作者:
基金项目:

国家自然科学基金(31570099,31370152)


A new 3-oxoacyl-acyl-carrier-protein reductase identified in Pseudomonas putida SJTE-1 can catalyze the transformation of 17β-estraiol
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]假单胞菌SJTE-1可高效转化17β-雌二醇,但是催化该转化的酶尚不清楚。本文鉴定了该菌株的一个新的3-酮酰基-ACP还原酶(ANI01589.1),并对其进行了功能研究。[方法]首先,我们克隆了该3-酰基-ACP还原酶的编码基因,在大肠杆菌BL21(DE3)菌株中进行了异源表达;利用金属离子亲和层析法,纯化获得了重组蛋白。体外检测了重组蛋白的活性与酶学性质,并利用高效液相色谱法(HPLC)测定了该酶的催化产物。[结果]3-酮酰基-ACP还原酶可被17β-雌二醇诱导表达,重组蛋白纯化量可达19.6 mg/L。蛋白序列比对结果表明,该蛋白包含短链脱氢酶/还原酶(SDR)的2个共有区域和多个保守残基。该酶以NAD+为辅助因子,将17β-雌二醇转化为雌酮;其Km值为0.071 mmol/L,kcat值为2.4±0.06/s-1,5 min内可转化超过95.8%的雌二醇。该酶的最佳反应温度为42℃,最佳pH为8.0。不同二价离子对该酶的活性影响不同,Mg2+和Mn2+可增强其酶活性。[结论]这一假单胞菌SJTE-1来源的3-酮酰基-ACP还原酶可高效催化17β-雌二醇的转化,该酶可能在该菌株的雌激素代谢过程中起到重要作用。

    Abstract:

    [Objective] Pseudomonas putida SJTE-1 can degrade 17β-estradiol (E2) efficiently, but the enzymes for the tranformation of E2 in this strain is still unclear. In this work, we identified and characterized a new 3-oxoacyl-acyl-carrier-protein reductase (3-oxoacyl-ACP reductase, ANI01589.1) involved in the E2 degradation. [Methods] We cloned the encoding gene of this 3-oxoacyl-ACP reductase and overexpressed it in Escherichia coli BL21(DE3) strain. We purified the recombinant protein by metal-ion affinity chromatography and characterized its enzymatic activity in vitro. Then we detected the product of this enzymatic reaction with High Performance Liquid Chromatography (HPLC). [Results] The transcription of the 3-oxoacyl-ACP reductase was induced by 17β-estradiol. Protein sequence alignment showed that it contained two consensus regions and the conserved residues of the short-chain dehydrogenase/reductase (SDR), and its structure was similar to that of the 3-oxoacyl-ACP reductase (4fw8.1.A). The recombinant protein was purified with the yield of 19.6 mg per liter culture. This 3-oxoacyl-ACP reductase could convert 17β-estradiol into estrone using NAD+ as the cofactor. Its Km value was 0.071 mmol/L and its kcat value was 2.4±0.06/s-1; and the transformation efficiency of this enzyme to 17β-estradiol was over 95.8% in 5 min. Its optimal reaction temperature was 42℃ and the optimal pH was 8.0. Divalent ions had different effect on the enzymatic activity; Mg2+ and Mn2+ could enhance the enzymatic activity. [Conclusion] The 3-oxoacyl-ACP reductase (ANI01589.1) could catalyze the transformation of 17β-estraiol efficiently and was important for the estrogen metabolism of P. putida SJTE-1.

    参考文献
    [1] Combalbert S, Hernandez-Raquet G. Occurrence, fate, and biodegradation of estrogens in sewage and manure. Applied Microbiology and Biotechnology, 2010, 86(6):1671-1692.
    [2] Luine VN. Estradiol and cognitive function:past, present and future. Hormones and Behavior, 2014, 66(4):602-618.
    [3] Yu CP, Deeb RA, Chu KH. Microbial degradation of steroidal estrogens. Chemosphere, 2013, 91(9):1225-1235.
    [4] Haiyan R, Shulan J, ud din Ahmad N, Wang D, Cui CW. Degradation characteristics and metabolic pathway of 17α-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere, 2007, 66(2):340-346.
    [5] Hom-Diaz A, Llorca M, Rodríguez-Mozaz S, Vicent T, Barceló D, Blánquez P. Microalgae cultivation on wastewater digestate:β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. Journal of Environmental Management, 2015, 155:106-113.
    [6] Shi JH, Fujisawa S, Nakai S, Hosomi M. Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Research, 2004, 38(9):2323-2330.
    [7] Liang RB, Liu H, Tao F, Liu Y, Ma C, Liu XP, Liu JH. Genome sequence of Pseudomonas putida strain SJTE-1, a bacterium capable of degrading estrogens and persistent organic pollutants. Journal of Bacteriology, 2012, 194(17):4781-4782.
    [8] Yang J, Li WJ, Ng TB, Deng XZ, Lin J, Ye XY. Laccases:production, expression regulation, and applications in pharmaceutical biodegradation. Frontier in Microbiology, 2017, 8:832.
    [9] Chang YH, Wang YL, Lin JY, Chuang LY, Hwang CC. Expression, purification, and characterization of a human recombinant 17β-hydroxysteroid dehydrogenase type 1 in Escherichia coli. Molecular Biotechnology, 2010, 44(2):133-139.
    [10] Ye XY, Wang H, Kan J, Li J, Huang TW, Xiong GM, Hu Z. A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17β-estradiol to estrone. Chemico-Biological Interactions, 2017, 276:105-112.
    [11] Yu YH, Liu CZ, Wang BX, Li YH, Zhang H. Characterization of 3,17β-hydroxysteroid dehydrogenase in Comamonas testosteroni. Chemico-Biological Interactions, 2015, 234:221-228.
    [12] Xu J, Zhang L, Hou JL, Wang XL, Liu H, Zheng DN, Liang RB. iTRAQ-based quantitative proteomic analysis of the global response to 17β-estradiol in estrogen-degradation strain Pseudomonas putida SJTE-1. Scientific Reports, 2017, 7:41682.
    [13] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25:402-408.
    [14] Pan TY, Huang P, Xiong GM, Maser E. Isolation and identification of a repressor TetR for 3,17β-HSD expressional regulation in Comamonas testosteroni. Chemico-Biological Interactions, 2015, 234:205-212.
    [15] Beck KR, Kaserer T, Schuster D, Odermatt A. Virtual screening applications in short-chain dehydrogenase/reductase research. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171:157-177.
    [16] Kavanagh KL, Jörnvall H, Persson B, Oppermann U. Medium-and short-chain dehydrogenase/reductase gene and protein families:the SDR superfamily:functional and structural diversity within a family of metabolic and regulatory enzymes. Cellular and Molecular Life Sciences, 2008, 65(24):3895-3906.
    [17] Safford R, Windust JHC, Lucas C, De Silva J, James CM, Hellyer A, Smith CG, Slabas AR, Hughes SG. Plastid-localised seed acyl-carrier protein of Brassica napus is encoded by a distinct, nuclear multigene family. FEBS Journal, 1988, 174(2):287-295.
    [18] Slabas AR, Chase D, Nishida I, Murata N, Sidebottom C, Safford R, Sheldon PS, Kekwick RG, Hardie DG, Mackintosh RW. Molecular cloning of higher-plant 3-oxoacyl-(acyl carrier protein) reductase. Sequence identities with the nodG-gene product of the nitrogen-fixing soil bacterium Rhizobium meliloti. Biochemical Journal, 1992, 283:321-326.
    [19] Zhang H, Ji Y, Wang Y, Zhang X, Yu YH. Cloning and characterization of a novel β-ketoacyl-ACP reductase from Comamonas testosteroni. Chemico-Biological Interactions, 2015, 234:213-220.
    引证文献
引用本文

彭万里,古丽米娜,郑达宁,梁如冰. 恶臭假单胞菌SJTE-1中转化17β-雌二醇的3-酰基-ACP还原酶的鉴定与功能研究[J]. 微生物学报, 2019, 59(10): 1927-1936

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-26
  • 最后修改日期:2018-12-19
  • 在线发布日期: 2019-10-10
文章二维码