灵杆菌合成灵菌红素的转录调控
作者:
基金项目:

国家自然科学基金(31800020,31300054);江苏省自然科学基金(BK20181009,BK20171163)


Research progress in transcriptional regulation of prodigiosin biosynthesis in Serratia marcescens
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    灵菌红素是一种具有多种生物活性的红色素,具有巨大的经济价值和广阔的应用前景。灵杆菌是灵菌红素的生产菌株,同时也是研究灵菌红素合成的模式菌株。本文综述了转录水平上调控灵杆菌合成灵菌红素的研究进展,总结了双(多)组分调控系统、群体感应系统、σ因子和转录因子在调控灵杆菌合成灵菌红素过程中发挥的作用,并对未来的研究方向进行了展望。

    Abstract:

    Prodigiosin is a red pigment with multiple biological activities, and of great economic value with promising application. Serratia marcescens is a major producer of prodigiosin, and the model organism for prodigiosin biosynthesis research. This paper reviews recent progresses in transcriptional regulation of prodigiosin synthesis in S. marcescens, illustrating the function of two/multiple component system, quorum sensing system, σ factor and transcriptional regulator in modulating prodigiosin biosynthesis. Moreover, further research focuses are discussed.

    参考文献
    [1] Hu DX, Withall DM, Challis GL, Thomson RJ. Structure, chemical synthesis, and biosynthesis of prodiginine natural products. Chemical Reviews, 2016, 116(14):7818-7853.
    [2] Darshan N, Manonmani HK. Prodigiosin and its potential applications. Journal of Food Science and Technology, 2015, 52(9):5393-5407.
    [3] Liu Y, Zhou H, Ma X, Lin C, Lu L, Liu D, Ma D, Gao X, Qian XY. Prodigiosin inhibits proliferation, migration, and invasion of nasopharyngeal cancer cells. Cellular Physiology and Biochemistry, 2018, 48(4):1556-1562.
    [4] Pandey R, Chander R, Sainis KB. Prodigiosins:a novel family of immunosuppressants with anti-cancer activity. Indian Journal of Biochemistry & Biophysics, 2007, 44(5):295-302.
    [5] Han SB, Park SH, Jeon YJ, Kim YK, Kim HM, Yang KH. Prodigiosin blocks T cell activation by inhibiting interleukin-2Rα expression and delays progression of autoimmune diabetes and collagen-induced arthritis. Journal of Pharmacology and Experimental Therapeutics, 2001, 299(2):415-425.
    [6] Papireddy K, Smilkstein M, Kelly JX, Salem SM, Alhamadsheh M, Haynes SW, Challis GL, Reynolds KA. Antimalarial activity of natural and synthetic prodiginines. Journal of Medicinal Chemistry, 2011, 54(15):5296-5306.
    [7] Genes C, Baquero E, Echeverri F, Maya JD, Triana O. Mitochondrial dysfunction in Trypanosoma cruzi:the role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease. Parasites & Vectors, 2011, 4:66.
    [8] Stankovic N, Senerovic L, Ilic-Tomic T, Vasiljevic B, Nikodinovic-Runic J. Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Applied Microbiology and Biotechnology, 2014, 98(9):3841-3858.
    [9] Arivizhivendhan KV, Mahesh M, Boopathy R, Swarnalatha S, Regina Mary R, Sekaran G. Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. Journal of Food Science and Technology, 2018, 55(7):2661-2670.
    [10] Kim D, Kim JF, Yim JH, Kwon SK, Lee CH, Lee HK. Red to red-the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. Journal of Microbiology and Biotechnology, 2008, 18(10):1621-1629.
    [11] Zhang HJ, Wang H, Zheng W, Yao ZY, Peng Y, Zhang S, Hu Z, Tao Z, Zheng TL. Toxic effects of prodigiosin secreted by Hahella sp. KA22 on harmful alga Phaeocystis globosa. Frontiers in Microbiology, 2017, 8:999.
    [12] Hejazi A, Falkiner FR. Serratia marcescens. Journal of Medical Microbiology, 1997, 46(11):903-912.
    [13] Elkenawy NM, Yassin AS, Elhifnawy HN, Amin MA. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnology Reports, 2017, 14:47-53.
    [14] Williamson NR, Fineran PC, Leeper FJ, Salmond GPC. The biosynthesis and regulation of bacterial prodiginines. Nature Reviews Microbiology, 2006, 4(12):887-899.
    [15] Harris AKP, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GPC. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology, 2004, 150(11):3547-3560.
    [16] Daniel-Ivad M, Pimentel-Elardo S, Nodwell JR. Control of specialized metabolism by signaling and transcriptional regulation:opportunities for new platforms for drug discovery? Annual Review of Microbiology, 2018, 72:25-48.
    [17] Jacob-Dubuisson F, Mechaly A, Betton JM, Antoine R. Structural insights into the signalling mechanisms of two-component systems. Nature Reviews Microbiology, 2018, 16(10):585-593.
    [18] Gristwood T, Fineran PC, Everson L, Williamson NR, Salmond GP. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiology, 2009, 9:112.
    [19] Lin CS, Tsai YH, Chang CJ, Tseng SF, Wu TR, Lu CC, Wu TS, Lu JJ, Horng JT, Martel J, Ojcius DM, Lai HC, Young JD. An iron detection system determines bacterial swarming initiation and biofilm formation. Scientific Reports, 2016, 6:36747.
    [20] Horng YT, Chang KC, Liu YN, Lai HC, Soo PC. The RssB/RssA two-component system regulates biosynthesis of the tripyrrole antibiotic, prodigiosin, in Serratia marcescens. International Journal of Medical Microbiology, 2010, 300(5):304-312.
    [21] Stella NA, Lahr RM, Brothers KM, Kalivoda EJ, Hunt KM, Kwak DH, Liu XY, Shanks RMQ. Serratia marcescens cyclic AMP receptor protein controls transcription of EepR, a novel regulator of antimicrobial secondary metabolites. Journal of Bacteriology, 2015, 197(15):2468-2478.
    [22] Fineran PC, Slater H, Everson L, Hughes K, Salmond GPC. Biosynthesis of tripyrrole and β-lactam secondary metabolites in Serratia:integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Molecular Microbiology, 2005, 56(6):1495-1517.
    [23] Monson RE, Tashiro Y, Salmond GPC. Overproduction of individual gas vesicle proteins perturbs flotation, antibiotic production and cell division in the enterobacterium Serratia sp. ATCC 39006. Microbiology, 2016, 162(9):1595-1607.
    [24] Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GPC. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Molecular Microbiology, 2000, 36(3):539-556.
    [25] Tao YL, Morohoshi T, Kato N, Ikeda T, Zhuang HS. The function of SpnR and the inhibitory effects by halogenated furanone on quorum sensing in Serratia marcescens AS-1. Acta Microbiologica Sinica, 2008, 48(3):391-397.
    [26] Coulthurst SJ, Kurz CL, Salmond GPC. luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing' show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology, 2004, 150(6):1901-1910.
    [27] Paget MS. Bacterial sigma factors and anti-sigma factors:structure, function and distribution. Biomolecules, 2015, 5(3):1245-1265.
    [28] Wilf NM, Salmond GPC. The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006. Microbiology, 2012, 158(3):648-658.
    [29] You ZY, Wang YJ, Sun SQ, Liu XX. Progress in microbial production of prodigiosin. Chinese Journal of Biotechnology, 2016, 32(10):1332-1347. (in Chinese)尤忠毓, 王玉洁, 孙诗清, 刘晓侠. 微生物发酵法生产灵菌红素研究进展. 生物工程学报, 2016, 32(10):1332-1347.
    [30] Sun D, Liu C, Zhu JR, Liu WJ. Connecting metabolic pathways:sigma factors in Streptomyces spp.. Frontiers in Microbiology, 2017, 8:2546.
    [31] Browning DF, Busby SJW. Local and global regulation of transcription initiation in bacteria. Nature Reviews Microbiology, 2016, 14(10):638-650.
    [32] Fineran PC, Everson L, Slater H, Salmond GPC. A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology, 2005, 151(12):3833-3845.
    [33] Stella NA, Fender JE, Lahr RM, Kalivoda EJ, Shanks RMQ. The LysR transcription factor, HexS, is required for glucose inhibition of prodigiosin production by Serratia marcescens. Advances in Microbiology, 2012, 2(4):511-517.
    [34] Shanks RMQ, Lahr RM, Stella NA, Arena KE, Brothers KM, Kwak DH, Liu XY, Kalivoda EJ. A Serratia marcescens PigP homolog controls prodigiosin biosynthesis, swarming motility and hemolysis and is regulated by cAMP-CRP and HexS. PLoS One, 2013, 8(3):e57634.
    [35] Hampton HG, McNeil MB, Paterson TJ, Ney B, Williamson NR, Easingwood RA, Bostina M, Salmond GPC, Fineran PC. CRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia. Microbiology, 2016, 162(6):1047-1058.
    [36] Gristwood T, McNeil MB, Clulow JS, Salmond GPC, Fineran PC. PigS and PigP regulate prodigiosin biosynthesis in Serratia via differential control of divergent operons, which include predicted transporters of sulfur-containing molecules. Journal of Bacteriology, 2011, 193(5):1076-1085.
    [37] Lee CM, Monson RE, Adams RM, Salmond GPC. The LacI-family transcription Factor, RbsR, is a pleiotropic regulator of motility, virulence, siderophore and antibiotic production, gas vesicle morphogenesis and flotation in Serratia. Frontiers in Microbiology, 2017, 8:1678.
    [38] Thomson NR, Cox A, Bycroft BW, Stewart GSAB, Williams P, Salmond GPC. The rap and hor proteins of Erwinia, Serratia and Yersinia:a novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens. Molecular Microbiology, 1997, 26(3):531-544.
    [39] Gristwood T, Fineran PC, Everson L, Salmond GPC. PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006. Molecular Microbiology, 2008, 69(2):418-435.
    [40] Xu H, Xu MJ, Yang TW, Rao ZM. Effect of temperature on prodigiosin synthesis in Serratia marcecens. Acta Microbiologica Sinica, 2014, 54(5):517-524. (in Chinese)徐虹, 徐美娟, 杨套伟, 饶志明. 温度对粘质沙雷氏菌合成灵菌红素的影响. 微生物学报, 2014, 54(5):517-524.
    [41] Fineran PC, Williamson NR, Lilley KS, Salmond GPC. Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, PigX. Journal of Bacteriology, 2007, 189(21):7653-7662.
    [42] Liu G, Chater KF, Chandra G, Niu GQ, Tan HR. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiology and Molecular Biology Reviews, 2013, 77(1):112-143.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙地,刘聪,刘伟杰. 灵杆菌合成灵菌红素的转录调控[J]. 微生物学报, 2019, 59(11): 2051-2060

复制
分享
文章指标
  • 点击次数:1939
  • 下载次数: 1688
  • HTML阅读次数: 2624
  • 引用次数: 0
历史
  • 收稿日期:2018-11-24
  • 最后修改日期:2019-03-09
  • 在线发布日期: 2019-11-01
文章二维码