青枯劳尔氏菌多基因家族III型效应蛋白在植物病害发展及防御系统中的作用
作者:
基金项目:

陕西省重点研发计划(2017NY-147);大学生创新创业项目(cx2018218)


Functions of type III effectors from multigenic family of Ralstonia solanacearum in plant disease development and immunity defense system
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    青枯劳尔氏菌是导致多种重要经济作物毁灭性枯萎(bacterial wilt)的一种土传病害,严重危害热带和亚热带地区食品安全。该细菌通过III型分泌系统(T3SS)向寄主细胞注射大量效应蛋白(T3Es)。效应蛋白是把双刃剑,既可诱导植物感病,又能激活植物防御系统。具有特殊重复结构的效应蛋白被归类成多基因家族,各家族成员协同致病,但其分子机制尚不清楚。本文围绕近年来有关多基因家族效应蛋白结构、功能和致病性等方面最新进展进行综述,为青枯菌致病机理和病害防治提供新思路。

    Abstract:

    Ralstonia solanacearum causes lethal wilting disease in many economic plants, threatening food security in tropical and subtropical agriculture. It injects type III effectors (T3Es) into the host cells via the type III secretion system. T3Es act as molecular double agents that are involved in either pathogenicity in the susceptible host plants or induction of hypersensitive response in the resistant host plants. A notable feature in this T3E repertoire is the existence of several multigenic families and their various internal repeats. T3Es from multigenic family of R. solanacearum contribute differently to pathogenicity towards the host plants and localize on the plant cell plasma membrane or nucleus. Previous researches demonstrate that the multigenic effectors jointly contribute to the plant disease development but are barely activated individually. However, the pathogenicity mechanism on the most multigenic effectors remains unclear. This review summarizes the recent achievements on elucidating the function of T3Es from multigenic family (GALA, HLK, SKWP, AWR and PopP) in R. solanacearum.

    参考文献
    [1] Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 2012, 13(6):614-629.
    [2] Boucher CA, van Gijsegem F, Barberis PA, Arlat M, Zischek C. Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J ournal of Bacteriol ogy, 1987, 169(12):5626-5632.
    [3] Hayward AC. Ralstonia solanacearum//Lederberg J. Encyclopedia of Microbiology. San Diego:Academic Press, 2000:32-42.
    [4] Yuliar YNA, Toyota K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments, 2015, 30(1):1-11.
    [5] Bai F, Li ZP, Umezawa A, Terada N, Jin SG. Bacterial type III secretion system as a protein delivery tool for a broad range of biomedical applications. Biotechnology Advances, 2018, 36(2):482-493.
    [6] Kim BS, French E, Caldwell D, Harrington EJ, Iyer-Pascuzzi AS. Bacterial wilt disease:host resistance and pathogen virulence mechanisms. Physiolog ical and Molecular Plant Pathology, 2016, 95:37-43.
    [7] Feng F, Zhou JM. Plant-bacterial pathogen interactions mediated by type III effectors. Curr ent Opin ion in Plant Biol ogy, 2012, 15(4):469-476.
    [8] Pandolfi V, Neto JRCF, da Silva MD, Amorim LLB, Wanderley-Nogueira AC, de Oliveira Silva RL, Kido EA, Crovella S, Iseppon AMB. Resistance (R) genes:applications and prospects for plant biotechnology and breeding. Current P rotein & P eptide S cience, 2017, 18(4):323-334.
    [9] Deslandes L, Rivas S. Catch me if you can:bacterial effectors and plant targets. Trends in Plant Sci ence, 2012, 17(11):644-655.
    [10] Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiology Reviews, 2016, 40(6):894-937.
    [11] Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thébault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher CA. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 2002, 415(6871):497-502.
    [12] Khan M, Subramaniam R, Desveaux D. Of guards, decoys, baits and traps:pathogen perception in plants by type III effector sensors. Current Opinion in Microbiology, 2016, 29:49-55.
    [13] Occhialini A, Cunnac S, Reymond N, Genin S, Boucher C. Genome-wide analysis of gene expression in Ralstonia solanacearum reveals that the hrpB gene acts as a regulatory switch controlling multiple virulence pathways. Molecular Plant-Microbe Interactions, 2005, 18(9):938-949.
    [14] Mukaihara T, Tamura N, Iwabuchi M. Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. Molecular Plant-Microbe Interactions, 2010, 23(3):251-262.
    [15] Mukaihara T, Tamura N, Murata Y, Iwabuchi M. Genetic screening of Hrp type III-related pathogenicity genes controlled by the HrpB transcriptional activator in Ralstonia solanacearum. Mol ecular Microbiol ogy, 2004, 54(4):863-875.
    [16] Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiology Reviews, 2011, 35(6):1100-1125.
    [17] Angot A, Peeters N, Lechner E, Vailleau F, Baud C, Gentzbittel L, Sartorel E, Genschik P, Boucher C, Genin S. Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. P roceedings of the N ational A cademy of S ciences of the U nited S tates of A merica, 2006, 103(39):14620-14625.
    [18] Mukaihara T, Tamura N. Identification of novel Ralstonia solanacearum type III effector proteins through translocation analysis of hrpB-regulated gene products. Microbiology, 2009, 155(7):2235-2244.
    [19] Deslandes L, Genin S. Opening the Ralstonia solanacearum type III effector tool box:insights into host cell subversion mechanisms. Current Opinion in Plant Biology, 2014, 20:110-117.
    [20] Chen L, Shirota M, Zhang Y, Kiba A, Hikichi Y, Ohnishi K. Involvement of HLK effectors in Ralstonia solanacearum disease development in tomato. Journal of General Plant Pathology, 2014, 80(1):79-84.
    [21] Ma KW, Ma WB. YopJ Family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiology and Molecular Biology Reviews, 2016, 80(4):1011-1027.
    [22] Lavie M, Shillington E, Eguiluz C, Grimsley N, Boucher C. PopP1, a new member of the YopJ/AvrRxv family of Type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum. Molecular Plant-Microbe Interactions, 2002, 15(10):1058-1068.
    [23] Poueymiro M, Cunnac S, Barberis P, Deslandes L, Peeters N, Cazale-Noel AC, Boucher C, Genin S. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Molecular Plant-Microbe Interactions, 2009, 22(5):538-550.
    [24] Liu YQ, Kanda A, Kiba A, Hikichi Y, Ohnishi K. Distribution of avirulence genes avrA and popP1 in 22 Japanese phylotype I strains of Ralstonia solanacearum. Journal of General Plant Pathology, 2009, 75(5):362-368.
    [25] Chen L, Dahal A, Zhang Y, Rokunuzzaman M, Kiba A, Hikichi Y, Ohnishi K. Involvement of avirulence genes avrA and popP1 of Japanese Ralstonia solanacearum strains in the pathogenicity to tobacco. Physiological and Molecular Plant Pathology, 2018, 102:154-162.
    [26] Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. P roceedings of the N ational A cademy of S ciences of the U nited S tates of A merica, 2003, 100(13):8024-8029.
    [27] Deslandes L, Olivier J, Theulières F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. P roceedings of the N ational A cademy of S ciences of the U nited S tates of A merica, 2002, 99(4):2404-2409.
    [28] Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB, Wirthmueller L, Menke FLH, Sohn KH, Jones JDG. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell, 2015, 161(5):1089-1100.
    [29] Tasset C, Bernoux M, Jauneau A, Pouzet C, Brière C, Kieffer-Jacquinod S, Rivas S, Marco Y, Deslandes L. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathogens, 2010, 6(11):e1001202.
    [30] Zhang ZM, Ma KW, Gao LF, Hu ZQ, Schwizer S, Ma WB, Song JK. Mechanism of host substrate acetylation by a YopJ family effector. Nat ure Plants, 2017, 3(8):17115.
    [31] Canonne J, Rivas S. Bacterial effectors target the plant cell nucleus to subvert host transcription. Plant Signaling & Behavior, 2012, 7(2):217-221.
    [32] Lavie M, Seunes B, Prior P, Boucher C. Distribution and sequence analysis of a family of Type III-dependent effectors correlate with the phylogeny of Ralstonia solanacearum strains. Molecular Plant-Microbe Interactions, 2004, 17(8):931-940.
    [33] Chen L, Li JK, Shirota M, Ohnishi K, Kiba A, Hikichi Y. Involvement of GALA effectors in Ralstonia solanacearum disease development towards two host plants. Acta Microbiologica Sinica, 2018, 58(1):131-141.
    [34] Remigi P, Anisimova M, Guidot A, Genin S, Peeters N. Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts. New Phytologist, 2011, 192(4):976-987.
    [35] Turner M, Jauneau A, Genin S, Tavella MJ, Vailleau F, Gentzbittel L, Jardinaud MF. Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiology, 2009, 150(4):1713-1722.
    [36] Dahal A, Chen L, Kiba A, Hikichi Y, Ohnishi K. Chloroplastic proteins are targets for the RipG effectors of Ralstonia solanacearum. International Journal of Environment & Technological Sciences, 2018, 5:147-156.
    [37] Solé M, Popa C, Mith O, Sohn KH, Jones JDG, Deslandes L, Valls M. The awr gene family encodes a novel class of Ralstonia solanacearum Type III effectors displaying virulence and avirulence activities. Molecular Plant-Microbe Interactions, 2012, 25(7):941-953.
    [38] Popa C, Li L, Gil S, Tatjer L, Hashii K, Tabuchi M, Coll NS, Ariño J, Valls M. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. Scientific Reports, 2016, 6:27058.
    [39] Chen L, Li JK, Shirota M, Ohnishi K. Analysis of the SKWP effectors to bacterial fitness in host plant by a novel competition assay. Acta Microbiologica Sinica, 2018, 58(3):432-442.
    [40] Macho AP, Guidot A, Barberis P, Beuzón CR, Genin S. A competitive index assay identifies several Ralstonia solanacearum type III effector mutant strains with reduced fitness in host plants. Molecular Plant-Microbe Interactions, 2010, 23(9):1197-1205.
    [41] Silva FAC, de Sousa Oliveira M, de Souza JM, Martins PGS, Pestana-Calsa MC, Junior TC. Plant proteomics and peptidomics in host-pathogen interaction:the weapons used by each side. Current Protein & Peptide Science, 2017, 18(4):400-410.
    [42] Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B, Holden DW, Komander D. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Molecular Cell, 2016, 63(2):261-276.
    [43] Zhang ZM, Ma KW, Yuan SG, Luo YF, Jiang SS, Hawara E, Pan SQ, Ma WB, Song JK. Structure of a pathogen effector reveals the enzymatic mechanism of a novel acetyltransferase family. Nature Structural & Molecular Biology, 2016, 23(9):847-852.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈立,魏谦卓,大西浩平. 青枯劳尔氏菌多基因家族III型效应蛋白在植物病害发展及防御系统中的作用[J]. 微生物学报, 2019, 59(11): 2061-2068

复制
分享
文章指标
  • 点击次数:1371
  • 下载次数: 1546
  • HTML阅读次数: 1274
  • 引用次数: 0
历史
  • 收稿日期:2018-12-06
  • 最后修改日期:2019-03-26
  • 在线发布日期: 2019-11-01
文章二维码