GSDMD介导的细胞焦亡在感染性疾病中的研究进展
作者:
基金项目:

国家自然科学基金(81772252)


GSDMD-mediated pyroptosis in infectious diseases
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    细胞焦亡是细胞感染时由炎症小体介导,以裂解细胞为特点的程序性死亡形式。其激活途径分为依赖半胱氨酸蛋白酶-1或半胱氨酸蛋白酶-4/5/11活化的经典与非经典途径。目前的研究表明细胞焦亡过程中主要效应蛋白是具有膜成孔活性的gasdermin(也作GSDM)家族成员。因此,细胞焦亡也被称为gasdermin介导的程序性坏死。当宿主受到感染时,细胞焦亡与宿主自身其他免疫防御机制存在互相调节机制,保证宿主在清除感染的同时降低自身损伤程度。本文笔者将从研究最为广泛的GSDMD在细胞焦亡途径中的作用机制、细胞焦亡在感染性疾病中的研究进展以及细胞焦亡与其他程序性死亡在感染性疾病中的相互作用这三个方面作系统叙述,期望为今后研究如何通过细胞焦亡途径治疗感染性疾病提供理论基础。

    Abstract:

    Pyroptosis is a form of inflammasome-mediated cell programmed death which exhibits cell lysis upon infection. The activation pathway is divided into canonical pathway via caspase-1 activation and noncanonical pathway via caspase-4/5/11 activation. Recent studies have shown that main effector proteins in pyroptosis are gasdermin (also known as GSDM) family members bearing a novel membrane pore-forming activity. Therefore, pyroptosis is also defined as a cell programmed death mediated by gasdermin. There is cross-regulation between pyroptosis and other immune defense mechanisms so that the host clears infection and relieves damage extent during infection. This review focuses on the function of GSDMD in pyroptosis, research progress of pyroptosis in infectious diseases, and the interaction between pyroptosis and other cell programmed death upon infection. We hope that this review can provide a theoretical basis for the treatment of infectious diseases by targeting pyroptosis.

    参考文献
    [1] Bergsbaken T, Fink SL, Cookson BT. Pyroptosis:host cell death and inflammation. Nature Reviews Microbiology, 2009, 7(2):99-109.
    [2] Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nature Reviews Immunology, 2017, 17(3):151-164.
    [3] Jorgensen I, Zhang Y, Krantz BA, Miao EA. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. Journal of Experimental Medicine, 2016, 213(10):2113-2128.
    [4] Jorgensen I, Lopez JP, Laufer SA, Miao EA. IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. European Journal of Immunology, 2016, 46(12):2761-2766.
    [5] von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB, van Rooijen N, Brown CR, Krantz BA, Leppla SH, Gronert K, Vance RE. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature, 2012, 490(7418):107-111.
    [6] Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu JS, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang YF, Bertram EM, Goodnow CC, Dixit VM. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575):666-671.
    [7] Shi JJ, Zhao Y, Wang K, Shi XY, Wang Y, Huang HW, Zhuang YH, Cai T, Wang FC, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575):660-665.
    [8] Saeki N, Usui T, Aoyagi K, Kim DH, Sato M, Mabuchi T, Yanagihara K, Ogawa K, Sakamoto H, Yoshida T, Sasaki H. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes & Cancer, 2009, 48(3):261-271.
    [9] Liu X, Zhang ZB, Ruan JB, Pan YD, Magupalli VG, Wu H, Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016, 535(7610):153-158.
    [10] Lamkanfi M, Kanneganti TD, Van Damme P, Vanden Berghe T, Vanoverberghe I, Vandekerckhove J, Vandenabeele P, Gevaert K, Núñez G. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Molecular & Cellular Proteomics, 2008, 7(12):2350-2363.
    [11] He WT, Wan HQ, Hu LC, Chen PD, Wang X, Huang Z, Yang ZH, Zhong CQ, Han JH. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Research, 2015, 25(12):1285-1298.
    [12] Ding JJ, Wang K, Liu W, She Y, Sun Q, Shi JJ, Sun HZ, Wang DC, Shao F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610):111-116.
    [13] Platnich JM, Chung H, Lau A, Sandall CF, Bondzi-Simpson A, Chen HM, Komada T, Trotman-Grant AC, Brandelli JR, Chun J, Beck PL, Philpott DJ, Girardin SE, Ho M, Johnson RP, MacDonald JA, Armstrong GD, Muruve DA. Shiga Toxin/Lipopolysaccharide activates caspase-4 and Gasdermin D to trigger mitochondrial reactive oxygen species upstream of the NLRP3 inflammasome. Cell Reports, 2018, 25(6):1525-1536.e7.
    [14] Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nature Communications, 2017, 8:14128.
    [15] Man SM, Kanneganti TD. Gasdermin D:the long-awaited executioner of pyroptosis. Cell Research, 2015, 25(11):1183-1184.
    [16] Broz P. Caspase target drives pyroptosis. Nature, 2015, 526(7575):642-643.
    [17] Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Current Opinion in Microbiology, 2013, 16(3):319-326.
    [18] Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiological Reviews, 2009, 89(1):193-277.
    [19] Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F. ESCRT machinery is required for plasma membrane repair. Science, 2014, 343(6174):1247136.
    [20] Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440(7081):228-232.
    [21] Sha WW, Mitoma H, Hanabuchi S, Bao MS, Weng LY, Sugimoto N, Liu Y, Zhang ZQ, Zhong J, Sun B, Liu YJ. Human NLRP3 inflammasome senses multiple types of bacterial RNAs. Proceedings of the National Academy of Science of the United States of America, 2014, 111(45):16059-16064.
    [22] Franchi L, Eigenbrod T, Muñoz-Planillo R, Ozkurede U, Kim YG, Chakrabarti A, Gale M Jr, Silverman RH, Colonna M, Akira S, Núñez G. Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. Journal of Immunology, 2014, 193(8):4214-4222.
    [23] Dowling JK, O'Neill LAJ. Biochemical regulation of the inflammasome. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47(5):424-443.
    [24] Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu JH, Monks BG, Fitzgerald KA, Hornung V, Latz E. Cutting edge:NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. Journal of Immunology, 2009, 183(2):787-791.
    [25] He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends in Biochemical Sciences, 2016, 41(12):1012-1021.
    [26] Hara H, Tsuchiya K, Kawamura I, Fang RD, Hernandez-Cuellar E, Shen YN, Mizuguchi J, Schweighoffer E, Tybulewicz V, Mitsuyama M. Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity. Nature Immunology, 2013, 14(12):1247-1255.
    [27] Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell, 2014, 157(5):1013-1022.
    [28] Sharma D, Kanneganti TD. The cell biology of inflammasomes:mechanisms of inflammasome activation and regulation. Journal of Cell Biology, 2016, 213(6):617-629.
    [29] Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proceedings of the National Academy of Science of the United States of America, 2016, 113(28):7858-7863.
    [30] Yang DH, He Y, Muñoz-Planillo R, Liu Q, Núñez G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity, 2015, 43(5):923-932.
    [31] Maltez VI, Tubbs AL, Cook KD, Aachoui Y, Falcone EL, Holland SM, Whitmire JK, Miao EA. Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium. Immunity, 2015, 43(5):987-997.
    [32] Dewamitta SR, Nomura T, Kawamura I, Hara H, Tsuchiya K, Kurenuma T, Shen YN, Daim S, Yamamoto T, Qu HX, Sakai S, Xu YT, Mitsuyama M. Listeriolysin O-dependent bacterial entry into the cytoplasm is required for calpain activation and interleukin-1α secretion in macrophages infected with Listeria monocytogenes. Infection and Immunity, 2010, 78(5):1884-1894.
    [33] Liu QQ, Liu YD, Zhang Q, Li X, Feng XM, Liu XC, Di BH, Shen YN. The role of syk in the inflammasome activation during listeria monocytogenes infection. Tianjin Medical Journal, 2014, 42(5):432-435. (in Chinese)刘倩倩, 刘运德, 张琼, 李雪, 冯香梅, 刘晓春, 邸宝华, 申艳娜. Syk调控单增李斯特菌感染中炎症复合体的活化. 天津医药, 2014, 42(5):432-435.
    [34] Tsuchiya K, Hara H, Kawamura I, Nomura T, Yamamoto T, Daim S, Dewamitta SR, Shen YN, Fang RD, Mitsuyama M. Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. Journal of Immunology, 2010, 185(2):1186-1195.
    [35] Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E, Eisenlohr L, Landel CP, Alnemri ES. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nature Immunology, 2010, 11(5):385-393.
    [36] Rathinam VAK, Jiang ZZ, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunology, 2010, 11(5):395-402.
    [37] Miller LS, Pietras EM, Uricchio LH, Hirano K, Rao S, Lin HP, O'Connell RM, Iwakura Y, Cheung AL, Cheng GH, Modlin RL. Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo. Journal of Immunology, 2007, 179(10):6933-6942.
    [38] Accarias S, Lugo-Villarino G, Foucras G, Neyrolles O, Boullier S, Tabouret G. Pyroptosis of resident macrophages differentially orchestrates inflammatory responses to Staphylococcus aureus in resistant and susceptible mice. European Journal of Immunology, 2015, 45(3):794-806.
    [39] Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker CA, Reyes CN, Miao EA, Aderem A, Götz F, Liu GY, Underhill DM. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1β secretion. Cell Host & Microbe, 2010, 7(1):38-49.
    [40] Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature, 1992, 358(6382):167-169.
    [41] Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nuñez G. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathogens, 2007, 3(8):e111.
    [42] Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, Deshmukh SD, Rathinam VAK. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell, 2016, 165(5):1106-1119.
    [43] Lupfer C, Kanneganti TD. The expanding role of NLRs in antiviral immunity. Immunological Reviews, 2013, 255(1):13-24.
    [44] Doitsh G, Galloway NLK, Geng X, Yang ZY, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Muñoz-Arias I, Greene WC. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature, 2014, 505(7484):509-514.
    [45] Karki R, Man SM, Malireddi RKS, Gurung P, Vogel P, Lamkanfi M, Kanneganti TD. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host & Microbe, 2015, 17(3):357-368.
    [46] Kerr JFR, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wideranging implications in tissue kinetics. British Journal of Cancer, 1972, 26(4):239-257.
    [47] Wang YP, Gao WQ, Shi XY, Ding JJ, Liu W, He HB, Wang K, Shao F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547(7661):99-103.
    [48] Yu JH, Li S, Qi J, Chen ZL, Wu YH, Guo J, Wang K, Sun XJ, Zheng JB. Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death & Disease, 2019, 10(3):193.
    [49] Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chemical Biology, 2017, 24(4):507-514.e4.
    [50] González-Juarbe N, Gilley RP, Hinojosa CA, Bradley KM, Kamei A, Gao GL, Dube PH, Bergman MA, Orihuela CJ. Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia. PLoS Pathogens, 2015, 11(12):e1005337.
    [51] Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han JH. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 2009, 325(5938):332-336.
    [52] Wu XN, Yang ZH, Wang XK, Zhang Y, Wan H, Song Y, Chen X, Shao J, Han J. Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death and Differentiation, 2014, 21(11):1709-1720.
    [53] Huang DL, Zheng XR, Wang ZA, Chen X, He WT, Zhang YR, Xu JG, Zhao H, Shi WK, Wang X, Zhu YQ, Han JH. The MLKL channel in necroptosis is an octamer formed by tetramers in a dyadic process. Molecular and Cellular Biology, 2017, 37(5):e00497-16.
    [54] Cai ZY, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biology, 2014, 16(1):55-65.
    [55] Chan FKM, Luz NF, Moriwaki K. Programmed necrosis in the cross talk of cell death and inflammation. Annual Review of Immunology, 2015, 33:79-106.
    [56] Kitur K, Wachtel S, Brown A, Wickersham M, Paulino F, Peñaloza HF, Soong G, Bueno S, Parker D, Prince A. Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signaling. Cell Reports, 2016, 16(8):2219-2230.
    [57] Christofferson DE, Li Y, Yuan JY. Control of life-or-death decisions by RIP1 kinase. Annual Review of Physiology, 2014, 76:129-150.
    [58] Newton K, Sun XQ, Dixit VM. Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and toll-like receptors 2 and 4. Molecular and Cellular Biology, 2004, 24(4):1464-1469.
    [59] Kearney CJ, Cullen SP, Tynan GA, Henry CM, Clancy D, Lavelle EC, Martin SJ. Necroptosis suppresses inflammation via termination of TNF-or LPS-induced cytokine and chemokine production. Cell Death and Differentiation, 2015, 22(8):1313-1327.
    [60] Stephenson HN, Herzig A, Zychlinsky A. Beyond the grave:when is cell death critical for immunity to infection. Current Opinion in Immunology, 2016, 38:59-66.
    [61] Kitur K, Parker D, Nieto P, Ahn DS, Cohen TS, Chung S, Wachtel S, Bueno S, Prince A. Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage. PLoS Pathogens, 2015, 11(4):e1004820.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘瑞卿,李胜玉,申艳娜. GSDMD介导的细胞焦亡在感染性疾病中的研究进展[J]. 微生物学报, 2019, 59(11): 2083-2093

复制
分享
文章指标
  • 点击次数:1652
  • 下载次数: 4606
  • HTML阅读次数: 11077
  • 引用次数: 0
历史
  • 收稿日期:2019-01-14
  • 最后修改日期:2019-04-19
  • 在线发布日期: 2019-11-01
文章二维码