桑树内生拮抗菌的分离鉴定及其对桑断枝烂叶病的生防初探
作者:
基金项目:

国家自然科学基金(31601678,31870518)


Isolation and identification of an antagonistic endophytic bacterium from mulberry for biocontrol against Boeremia exigua
Author:
  • Ruolin Wang

    Ruolin Wang

    State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China;Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Weifang Xu

    Weifang Xu

    State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China;Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Fei Wang

    Fei Wang

    State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China;Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Xiaolei Zhou

    Xiaolei Zhou

    State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China;Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Yue Zheng

    Yue Zheng

    State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China;Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Hongsen Jiang

    Hongsen Jiang

    State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China;Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Jie Xie

    Jie Xie

    State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China;Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 本研究从健康桑树茎中分离筛选对桑断枝烂叶病菌具显著拮抗作用的内生细菌,为该病生物防治奠定研究基础。[方法] 采用组织培养法分离桑树内生菌,抑菌圈法和平板对峙法筛选抑菌活性稳定的内生拮抗菌;根据形态学、生理生化特征检测和基于16S rDNA、gyrAgyrB基因的系统发育分析对拮抗菌进行菌种鉴定;利用抑菌圈法测定拮抗菌株活性发酵液热稳定性,菌丝生长速率法检测活性发酵液抑菌谱;并通过观察拮抗菌对桑断枝烂叶病菌Boeremia exigua GXH1菌株生长及菌丝形态的影响,扩增抑菌活性物质合成关键基因,以及采用酸沉淀法提取拮抗菌株脂肽类化合物并进行高效液相色谱串联质谱分析(LC-MS),初步探究可能的抑菌机制。[结果] 从健康桑树茎中共分离获得17株桑树内生细菌,并从中筛选获得一株对桑断枝烂叶病菌B.exigua GXH1有稳定拮抗作用的桑树内生细菌NPJ13菌株。该菌株形态学、生理生化特征与芽孢杆菌属一致,基于16S rDNA、gyrAgyrB基因序列的系统发育分析结果显示该菌株与贝莱斯芽孢杆菌(Bacillus velezensis)的亲缘关系最近,且处于系统发育树的最小分枝,故将NPJ13菌株鉴定为贝莱斯芽孢杆菌,命名为B.velezensis NPJ13。NPJ13菌株对灰霉病菌SWU5、核地杖菌SXSG-5、核盘菌PZ-2及烟草疫霉SWU20等12种病原真菌具有不同程度的拮抗作用,其活性发酵液具有较好的热稳定性。NPJ13菌株会导致桑断枝烂叶病菌GXH1菌丝发生扭曲、膨大、透明度增加、断裂等畸变现象;基因检测结果显示NPJ13菌株基因组中具有PKSI、NRPS、Sfp、ItuD、Srfc等5种抑菌活性物质合成关键基因,LC-MS检测结果表明菌株NPJ13脂肽类粗提物中含有表面活性素和伊枯草菌素。[结论] 本研究分离筛选获得一株对桑断枝烂叶病菌具有显著拮抗作用的桑树内生细菌B.velezensis NPJ13菌株,为桑断枝烂叶病的生物防治提供了候选菌株。

    Abstract:

    [Objective] Antagonistic endophytic bacteria were isolated and screened from the healthy stems of mulberry using Boeremia exigua (the pathogen of mulberry snags rotten leaves disease) as target, for the biological control of mulberry snags rotten leaves disease.[Methods] Endophytic bacteria were isolated from mulberry by tissue isolation method, and the antagonistic bacteria with stable antifungal activity were screened out by the combination of inhibition zone method and confrontation culture method. The antagonistic bacterium was identified through morphological features, cultural, physiological and biochemical characteristics and phylogenetic analysis based on 16S rDNA, gyrA and gyrB sequence. The thermal stability and antimicrobial spectrum of cell-free fermentation supernatant were assayed by inhibition zone method and mycelial growth rate method, respectively. Finally, the antimicrobial mechanism was explored through observation the affection of the antagonistic bacteria on B. exigua GXH1, amplification the key genes that were involved in the biosynthesis of antimicrobial active substances, and the lipopeptide compounds produced by antagonistic bacteria were extracted by acid precipitation and analyzed by LC-MS.[Results] In total 17 endophytic bacteria were isolated from healthy mulberry. Among them, strain NPJ13 exhibited strong and stable antagonistic activity against B. exigua GXH1. Morphological features, cultural, physiological and biochemical characteristics analysis results indicated that NPJ13 belongs to genus of Bacillus. Phylogenetic analysis results based on 16S rDNA, gyrA and gyrB genes revealed that NPJ13 strain and several strains of Bacillus velezensis were in the same minimal clade. Therefore, strain NPJ13 was identified as Bacillus velezensis and named B. velezensis NPJ13. The results of thermal stability test showed that strain NPJ13 had superior heat stability. Antimicrobial spectrum showed that strain NPJ13 had different degrees of antagonism against 12 kinds of pathogenic fungi, such as Botrytis cinerea SWU5, Scleromitrula shiraiana SXSG-5, Sclerotinia sclerotiorum PZ-2, Phytophthora nicotianae SWU20 and so on. The hyphaes of B. exigua GXH1 treated by B. velezensis NPJ13 would become distorted, intumescent, broken and more transparent. The results of functional genes detection showed that the genome of B. velezensis NPJ13 contains 5 antimicrobial metabolite synthesis related genes, which are PKSI, NRPS, Sfp, ItuD, Srfc. Surfactins and iturins were detected from the lipopeptide compounds of strain NPJ13 by LC-MS.[Conclusion] The above results indicated that mulberry endophytic bacterium B. velezensis NPJ13 has strong antagonistic activity on B. exigua GXH1, being a candidate strain for developing the biological control agent against mulberry snags rotten leaves disease.

    参考文献
    [1] Dai YW, Zhu H, Du HZ, Zhang JB, Wen BY. Economic value and ecological function of mulberry (Morus alba L.). Protection Forest Science and Technology, 2009, (1):78-80. (in Chinese)戴玉伟, 朱弘, 杜宏志, 张剑斌, 温宝阳. 论桑树资源经济价值和生态功能. 防护林科技, 2009, (1):78-80.
    [2] Pu GQ, Huang YJ, Mao JP, Zhang YJ. List of Chinese mulberry diseases (I). China Sericulture, 2012, 33(2):21-24. (in Chinese)浦冠勤, 黄艳君, 毛建萍, 张月季. 中国桑树病害名录(I). 中国蚕业, 2012, 33(2):21-24.
    [3] Wei HL. Identification of pathogen of mulberry snags rotten leaves disease. Master Dissertation of Guangxi University, 2015. (in Chinese)韦海玲. 桑断枝烂叶病的病原菌种类鉴定. 广西大学硕士学位论文, 2015.
    [4] Xiao YF, Mao RQ, Wan FH. New concept of biological control:bio-control plants used for management of arthropod pests. Chinese Journal of Biological Control, 2013, 29(1):1-10. (in Chinese)肖英方, 毛润乾, 万方浩. 害虫生物防治新概念——生物防治植物及创新研究. 中国生物防治学报, 2013, 29(1):1-10.
    [5] Gao XN, Chen JY, Huang LL, Qiao HP, Han QM, Kang ZS. Screening of antagonistic endophytic bacteria and their roles in control of Sclerotinia sclerotiorum in canola. Chinese Journal of Pesticide Science, 2010, 12(2):161-167. (in Chinese)高小宁, 陈金艳, 黄丽丽, 乔宏萍, 韩青梅, 康振生. 油菜菌核病内生拮抗细菌的筛选及防病作用研究. 农药学学报, 2010, 12(2):161-167.
    [6] Dou GM, Liu XY, Zhang YD, Ma YC. Screening and identification of antagonistic endophytes against Sclerotinia sclerotiorum. Guangdong Agricultural Sciences, 2013, (7):78-82. (in Chinese)窦桂铭, 刘晓瑜, 张银东, 马玉超. 大豆菌核病拮抗内生细菌的筛选与鉴定. 广东农业科学, 2013, (7):78-82.
    [7] Kumar S, Kaushik N. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One, 2013, 8(2):e56202.
    [8] Fang ZJ, Zhang XX, Ma LA. Advances in plant endophytes. Journal of Yangtze University (Natural Science Edition), 2018, 15(10):41-45. (in Chinese)方珍娟, 张晓霞, 马立安. 植物内生菌研究进展. 长江大学学报(自然科学版), 2018, 15(10):41-45.
    [9] Porras-Alfaro A, Bayman P. Hidden fungi, emergent properties:endophytes and microbiomes. Annual Review of Phytopathology, 2012, 49:291-315.
    [10] Ren HS, Xu WF, Wang AY, Zuo WD, Xie J. Research on biodiversity of endophytic bacteria and the antagonistic endophytes in mulberry. Journal of Southwest University (Natural Science Edition), 2017, 39(1):36-45. (in Chinese)任慧爽, 徐伟芳, 王爱印, 左伟东, 谢洁. 桑树内生细菌多样性及内生拮抗活性菌群的研究. 西南大学学报(自然科学版), 2017, 39(1):36-45.
    [11] Xie J, Shu P, Strobel G, Chen J, Wei JH, Xiang ZH, Zhou ZY. Pantoea agglomerans SWg2 colonizes mulberry tissues, promotes disease protection and seedling growth. Biological Control, 2017, 113:9-17.
    [12] Xu WF, Ren HS, Ou T, Lei T, Wei JH, Huang CS, Li T, Strobel G, Zhou ZY, Xie J. Genomic and functional characterization of the endophytic Bacillus subtilis 7PJ-16 strain, a potential biocontrol agent of mulberry fruit sclerotiniose. Microbial Ecology, 2019, 77(3):651-663.
    [13] Mu ZM, Lu GB, Ji XL, Gai YP, Wang YW, Gao HJ, Zha CY. Identification and colonization of an antagonistic endophytic Burkholderia cepacia Lu10-1 isolated from mulberry. Acta Microbiologica Sinica, 2008, 48(5):623-630. (in Chinese)牟志美, 路国兵, 冀宪领, 盖英萍, 王彦文, 高绘菊, 查传勇. 桑树内生拮抗细菌Burkholderia cepacia Lu10-1的分离鉴定及其内生定殖. 微生物学报, 2008, 48(5):623-630.
    [14] Gong AD. Isolation and antagonistic mechanism analyses of biocontrol agents against Fusarium and Aspergillus species. Doctor Dissertation of Huazhong Agricultural University, 2015. (in Chinese)宫安东. 镰刀菌和黄曲霉菌生防菌的分离及拮抗机理研究. 华中农业大学博士学位论文, 2015.
    [15] Gao XW, Yao SY, Pham H, Vater J, Wang JS. Inhibitive substance produced by Bacillus subtilis B2 strain. Chinese Journal of Biological Control, 2003, 19(4):175-179. (in Chinese)高学文, 姚仕义, Pham H, Vater J, 王金生. 枯草芽孢杆菌B2菌株产生的抑菌活性物质分析. 中国生物防治, 2003, 19(4):175-179.
    [16] Qian CD, Li BQ, Zhao T, Guo QG, Lu XY, Li SZ, Ma P. Isolation and stability analysis of lipopeptides produced by Bacillus subtilis strain BAB-1. Journal of Agricultural Science and Technology, 2009, 11(6):69-74. (in Chinese)钱常娣, 李宝庆, 赵添, 郭庆港, 鹿秀云, 李社增, 马平. 枯草芽孢杆菌BAB-1脂肽类化合物的分离及稳定性分析. 中国农业科技导报, 2009, 11(6):69-74.
    [17] Xie YL, Ma LZ, Xu ZW, Du Z, Gao XW. Molecular identification of Bacillus strains isolated from extreme dry-sand environment in Qinghai Chaidamu region and its lipopeptide compound analysis. Microbiology China, 2012, 39(8):1079-1086. (in Chinese)谢永丽, 马莉贞, 徐志伟, 杜卓, 高学文. 青海柴达木极端干旱沙地分离芽孢杆菌的分子鉴定及拮抗活性分析. 微生物学通报, 2012, 39(8):1079-1086.
    [18] Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions. Molecular Microbiology, 2005, 56(4):845-857.
    [19] Zhao PC, Quan CS, Wang YG, Wang JH, Fan SD. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Journal of Basic Microbiology, 2014, 54(5):448-456.
    [20] Vitullo D, Di Pietro A, Romano A, Lanzotti V, Lima G. Role of new bacterial surfactins in the antifungal interaction between Bacillus amyloliquefaciens and Fusarium oxysporum. Plant Pathology, 2012, 61(4):689-699.
    [21] Wei YH, Chu IM. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme and Microbial Technology, 1998, 22(8):724-728.
    [22] Xie J, Xia T, Lin LP, Zuo WD, Zhou ZY. Isolation and identification of an antagonistic endophytic bacterial strain from mulberry. Science of Sericulture, 2009, 35(1):121-125. (in Chinese)谢洁, 夏天, 林立鹏, 左伟东, 周泽扬. 一株桑树内生拮抗菌的分离鉴定. 蚕业科学, 2009, 35(1):121-125.
    [23] Zhang YP, Ling LJ, Zhao Y, Hou YQ. Study on antagonistic activity on P. infestans exhibited from Pseudomonas sp. HC5. Gansu Agricultural Science and Technology, 2018, (1):33-36. (in Chinese)张艳萍, 令利军, 赵瑛, 厚毅清. 假单胞菌HC5对马铃薯晚疫病菌的抑制作用研究. 甘肃农业科技, 2018, (1):33-36.
    [24] 布坎南RE, 吉本斯NE. 伯杰细菌鉴定手册. 第8版. 中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组, 译. 北京:科学出版社, 1984.
    [25] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京:科学出版社, 2001.
    [26] 沈萍, 陈向东. 微生物学实验. 第4版. 北京:高等教育出版社, 2007.
    [27] Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 1991, 173(2):697-703.
    [28] Chun J, Bae KS. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek, 2000, 78(2):123-127.
    [29] Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 1995, 61(3):1104-1109.
    [30] 方中达. 植病研究方法. 第3版. 北京:中国农业出版社, 1998.
    [31] Wang YT, Zhang CB, Qi L, Jia XQ, Lu WY. Diversity and antimicrobial activities of cultivable bacteria isolated from Jiaozhou Bay. Acta Microbiologica Sinica, 2016, 56(12):1892-1900. (in Chinese)王怡婷, 张传波, 齐麟, 贾晓强, 卢文玉. 胶州湾沉积物可培养细菌的多样性及其抑菌活性. 微生物学报, 2016, 56(12):1892-1900.
    [32] Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, Roberts DP. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbiology and Biotechnology, 2008, 80(1):115-123.
    [33] Gond SK, Bergen MS, Torres MS, White Jr JF. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiological Research, 2015, 172:79-87.
    [34] Luo CP, Liu XH, Zhou HF, Wang XY, Chen ZY. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Applied and Environmental Microbiology, 2015, 81(1):422-431.
    [35] Fang X, Xu WF, Niu N, Ou T, Wang F, Zuo WD, Xie J. Screening, identification and optimization of fermentation conditions of an antagonistic endophytic bacterium from mulberry. Acta Microbiologica Sinica, 2018, 58(12):2147-2160. (in Chinese)方翔, 徐伟芳, 牛娜, 欧婷, 王飞, 左伟东, 谢洁. 一株桑树内生拮抗菌的分离、鉴定及发酵条件优化. 微生物学报, 2018, 58(12):2147-2160.
    [36] Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis:Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications, 1968, 31(3):488-494.
    [37] Cao Y, Xu ZH, Ling N, Yuan YJ, Yang XM, Chen LH, Shen B, Shen QR. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Scientia Horticulturae, 2012, 135:32-39.
    [38] Sang JW, Yang Y, Chen YP, Cai JM, Lu CM, Huang GX. Antibacterial activity analysis of lipopeptide and polyketide compounds produced by endophytic bacteria Bacillus amyloliquefaciens BEB17. Acta Phytopathologica Sinica, 2018, 48(3):402-412. (in Chinese)桑建伟, 杨扬, 陈奕鹏, 蔡吉苗, 陆翠梅, 黄贵修. 内生解淀粉芽孢杆菌BEB17脂肽类和聚酮类化合物的抑菌活性分析. 植物病理学报, 2018, 48(3):402-412.
    [39] Cai GL, Zhang F, Ouyang YX, Zhao CS, Peng XH, Jiang AM. Research progress on Bacillus velezensis. Northern Horticulture, 2018, (12):162-167. (in Chinese)蔡高磊, 张凡, 欧阳友香, 赵昌松, 彭宣和, 江爱明. 贝莱斯芽孢杆菌(Bacillus velezensis)研究进展. 北方园艺, 2018, (12):162-167.
    [40] Zong Y, Zhao YJ, Liu Y, Yang QL. Study on the inhibitory effect of Bacillus velezensis on Fusarium graminearum. Journal of Nuclear Agricultural Sciences, 2018, 32(2):310-317. (in Chinese)宗英, 赵月菊, 刘阳, 杨庆利. 一株贝莱斯芽孢杆菌抑制禾谷镰刀菌的研究. 核农学报, 2018, 32(2):310-317.
    [41] Kim SY, Lee SY, Weon HY, Sang MK, Song J. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. Journal of Biotechnology, 2017, 241:112-115.
引用本文

王若琳,徐伟芳,王飞,周小磊,郑月,江鸿森,谢洁. 桑树内生拮抗菌的分离鉴定及其对桑断枝烂叶病的生防初探[J]. 微生物学报, 2019, 59(11): 2130-2143

复制
分享
文章指标
  • 点击次数:1308
  • 下载次数: 1800
  • HTML阅读次数: 1999
  • 引用次数: 0
历史
  • 收稿日期:2018-11-28
  • 最后修改日期:2019-04-19
  • 在线发布日期: 2019-11-01
文章二维码