钴60诱变选育平菇新菌株的研究
作者:
基金项目:

国家重点研发计划(2017YFD0601002,2018YFD1001001);公益性行业(农业)科研专项(201503137);吉林省教育厅项目(JJKH20180670KJ);111引智基地项目(D17014)


Breeding of new Pleurotus ostreatus strain by mutation with 60Co-γ irradiation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 利用60Co-γ射线诱变平菇原生质体创制平菇新种质。[方法] 通过3个剂量的60Co-γ射线辐照处理平菇原生质体悬浮液,统计不同剂量的致死率,利用拮抗试验、SSR分子标记筛选突变菌株,通过出菇试验筛选优良的平菇新菌株。[结果] 平菇原生质体在0.9 KGy的诱变处理下致死率为0%,在1.2 KGy的诱变处理下菌株致死率63.33%,在1.5 KGy的诱变处理下菌株致死率为76.67%。经拮抗试验和SSR分子标记筛选,获得了8株突变菌株,出菇试验结果表明7个突变菌株产量和生物学效率均有不同程度的降低,菌盖颜色也略有变化,其中突变菌株1.5-P4的产量较对照降低了41.92%;而突变菌株1.2-P1为高产菌株,其产量达437.95±12.22 g/袋,较对照菌株提高了9.76%,生物学效率较CK提高了10.38%。[结论] 利用60Co-γ射线诱变育种技术得到了1个性状较为优良的平菇新菌株,这为其他食药用菌诱变育种研究提供了参考。

    Abstract:

    [Objective] To create new germpla of Pleurotus ostreatus by mutagenic treatments protoplast by 60Co-γ-rays.[Methods] The protoplasts solution was treated by three different radiation doses of 60Co-γ-rays, we analysed the strain lethality rate, and screened the mutant strains by antagonistic reaction and simple sequence repeat (SSR) identification. Finally, we screened a new and fine strain of Pleurotus ostreatus.[Results] The strain lethality rate was 0% under 0.9 KGy, 63.33% under 1.2 KGy, and 76.67% under 1.5 KGy. After the antagonistic reaction and SSR identification, we found 8 mutant strains that were change. The fruiting results showed that the yield and biological efficiency of 7 mutant strains were lower than the control, and the cap color had some change. Compared with the control the yield of 1.5-P4 decreased 41.92%, but the 1.2-P1 was the high-yield strain with yield of 437.95±12.22 g/bag, increased by 9.76% compared with the control.[Conclusion] We screened a new and fine strain of Pleurotus ostreatus by mutation breeding with 60Co-γ-rays, and the results provide reference to mutation breeding of edible and medicinal fungi.

    参考文献
    [1] Aggelis G, Iconomou D, Christou M, Bokas D, Kotzailias S, Christou G, Tsagou V, Papanikolaou S. Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Research, 2003, 37(16):3897-3904.
    [2] Sánchez C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 2010, 85(5):1321-1337.
    [3] Girmay Z, Gorems W, Birhanu G, Zewdie S. Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. AMB Express, 2016, 6:87.
    [4] Mattila P, Könkö K, Eurola M, Pihlava JM, Astola J, Vahteristo L, Hietaniemi V, Kumpulainen J, Valtonen M, Piironen V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. Journal of Agricultural and Food Chemistry, 2001, 49(5):2343-2348.
    [5] Qu JB, Zhao MR, Hsiang T, Feng XX, Zhang JX, Huang CY. Identification and characterization of small noncoding RNAs in genome sequences of the edible fungus Pleurotus ostreatus. BioMed Research International, 2016, 2016:2503023.
    [6] Lee JE, Lee IS, Kim KC, Yoo ID, Yang HM. ROS scavenging and anti-wrinkle effects of Clitocybin A isolated from the mycelium of the mushroom Clitocybe aurantiaca. Journal of Microbiology and Biotechnology, 2017, 27(5):933-938.
    [7] Zolan ME, Tremel CJ, Pukkila PJ. Production and characterization of radiation-sensitive meiotic mutants of Coprinus cinereus. Genetics, 1988, 120(2):379-387.
    [8] Wang ZM, Zhao ZZ, Lu J, Chen ZJ, Mao AW, Teng GJ, Liu FJ. A comparison of the biological effects of 125I seeds continuous low-dose-rate radiation and60Co high-dose-rate gamma radiation on non-small cell lung cancer cells. PLoS One, 2015, 10(8):e0133728.
    [9] Zhu ZP, Wu X, Lv BB, Wu GG, Wang JB, Jiang W, Li P, He JH, Chen JZ, Chen MJ, Bao DP, Zhang JS, Tan Q, Tang XM. A new approach for breeding low-temperature-resistant Volvariella volvacea strains:genome shuffling in edible fungi. Biotechnology and Applied Biochemistry, 2016, 63(5):605-615.
    [10] Zhao C, Tian XM, Wang GY, Song AR, Liang WX. High-Level Production of exopolysaccharides by a cosmic radiation-induced mutant M270 of the maitake medicinal mushroom, Grifola frondosa (Agaricomycetes). International Journal of Medicinal Mushrooms, 2016, 18(7):621-630.
    [11] Jin HX, Ouyang XK, Hu ZC. Enhancement of epoxide hydrolase production by 60Co gamma and UV irradiation mutagenesis of Aspergillus niger ZJB-09103. Biotechnology and Applied Biochemistry, 2017, 64(3):392-399.
    [12] Tsuji K, Rahn PD, Steindler KA. 60Co-irradiation as an alternate method for sterilization of penicillin G, neomycin, novobiocin, and dihydrostreptomycin. Journal of Pharmaceutical Sciences, 1983, 72(1):23-26.
    [13] Akram K, Ahn JJ, Baek JY, Yoon SR, Kwon JH. Absorbed-dose estimation and quality attributes of gamma-irradiated fresh shiitake mushrooms. Journal of the Science of Food and Agriculture, 2013, 93(3):634-640.
    [14] Tsai SY, Mau JL, Huang SJ. Enhancement of antioxidant properties and increase of content of vitamin D2 and non-volatile components in fresh button mushroom, Agaricus bisporus (higher Basidiomycetes) by γ-irradiation. International Journal of Medicinal Mushrooms, 2014, 16(2):137-147.
    [15] Wu WJ, Ahn BY. Statistical optimization of ultraviolet irradiate conditions for vitamin D2 synthesis in oyster mushrooms (Pleurotus ostreatus) using response surface methodology. PLoS One, 2014, 9(4):e95359.
    [16] Li QH. Breed new strain of Agaricus bisporus by the technique of radioisotope 60Co mutagenesis. Master Dissertation of Sichuan Agricultural University, 2013. (in Chinese)李前红. 利用放射性同位素60Co诱变技术创制双孢蘑菇育种新材料研究. 四川农业大学硕士学位论文, 2013.
    [17] Xiang XZ, Wang XX, Bian YB, Xu ZY. Development of crossbreeding high-yield-potential strains for commercial cultivation in the medicinal mushroom Wolfiporia cocos (Higher Basidiomycetes). Journal of Natural Medicines, 2016, 70(3):645-652.
    [18] Bleve G, Lezzi C, Spagnolo S, Tasco G, Tufariello M, Casadio R, Mita G, Rampino P, Grieco F. Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability. Protein Engineering, Design and Selection, 2013, 26(1):1-13.
    [19] Amaradasa BS, Everhart SE. Effects of sublethal fungicides on mutation rates and genomic variation in fungal plant pathogen, Sclerotinia sclerotiorum. PLoS One, 2016, 11(12):e0168079.
    [20] Bruvo R, Michiels NK, D'Souza TG, Schulenburg H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology, 2004, 13(7):2101-2106.
    [21] Tabima JF, Everhart SE, Larsen MM, Weisberg AJ, Kamvar ZN, Tancos MA, Smart CD, Chang JH, Grunwald NJ. Microbe-ID:an open source toolbox for microbial genotyping and species identification. PeerJ, 2016, 4:e2279.
    [22] Braghini R, Pozzi CR, Aquino S, Rocha LO, Corrêa B. Effects of γ-radiation on the fungus Alternaria alternata in artificially inoculated cereal samples. Applied Radiation and Isotopes, 2009, 67(9):1622-1628.
    [23] Mukherjee M, Sengupta S. Mutagenesis of protoplasts and regeneration of mycelium in the mushroom Volvariella volvacea. Applied and Environmental Microbiology, 1986, 52(6):1412-1414.
    [24] Lind M, Stenlid J, Olson Å. Genetics and QTL mapping of somatic incompatibility and intraspecific interactions in the basidiomycete Heterobasidion annosum s. l. Fungal Genetics & Biology, 2007, 44(12):1242-1251.
    [25] Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L. Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Applied and Environmental Microbiology, 2003, 69(1):616-624.
    [26] Ceresini PC, Shew HD, Vilgalys RJ, Cubeta MA. Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina. Mycologia, 2002, 94(3):437-449.
    [27] Johannesson H, Stenlid J. Nuclear reassortment between vegetative mycelia in natural populations of the basidiomycete Heterobasidion annosum. Fungal Genetics and Biology, 2004, 41(5):563-570.
    [28] Micali CO, Smith ML. On the independence of barrage formation and heterokaryon incompatibility in Neurospora crassa. Fungal Genetics and Biology, 2003, 38(2):209-219.
    [29] Sonnenberg ASM, Baars JJP, Gao W, Visser RGF. Developments in breeding of Agaricus bisporus var. bisporus:progress made and technical and legal hurdles to take. Applied Microbiology and Biotechnology, 2017, 101(5):1819-1829.
    [30] Liu XB, Feng B, Li J, Yang ZL. Genetic diversity and breeding history of winter mushroom (Flammulina velutipes) in China uncovered by genomic SSR markers. Gene, 2016, 591(1):227-235.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋冰,李雪飞,史泽宇,李长田,付永平,李玉. 钴60诱变选育平菇新菌株的研究[J]. 微生物学报, 2019, 59(11): 2155-2164

复制
分享
文章指标
  • 点击次数:988
  • 下载次数: 1218
  • HTML阅读次数: 1862
  • 引用次数: 0
历史
  • 收稿日期:2018-12-11
  • 最后修改日期:2019-04-10
  • 在线发布日期: 2019-11-01
文章二维码