黄海日照海域部分可培养细菌的分离、初步鉴定及产琼胶酶细菌的筛选
作者:
基金项目:

济宁医学院教师科研扶持基金(JYFC2018KJ069)


Isolation and identification of some cultivated bacteria from the sea area of Rizhao for screening of agarase-producing bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    海洋细菌在海洋的物质与能量循环中起着非常重要的作用。为了适应复杂多变的海洋环境,海洋细菌在物种和基因方面表现出极高的丰富度。[目的] 对中国黄海日照海域部分可培养细菌进行分离、初步鉴定,同时筛选产琼胶酶菌株。[方法] 对从日照海域河流入海口和潮间带沙样和海水中分离到的73株细菌进行了16S rRNA基因序列测定,并进行序列同源性分析。同时检测了这些菌株对琼脂的降解能力。[结果] 结果显示,分离到的73株细菌属于4个门、13个科、34个属。18株细菌可能是新分类单元,其中16株为潜在新种,2株为可能的新属。73株细菌中,5株菌具有降解琼脂的能力,最高的琼胶酶活可达到2.17±0.04 U/mL,其中4株嗜琼胶属的细菌降解琼脂糖的产物均为新琼四糖。[结论] 本研究丰富了人们对黄海海域可培养细菌多样性的理解,为新物种和新酶的研究提供了基础,并为琼胶酶的提取提供了高产菌株。

    Abstract:

    Marine bacteria are the major members of marine life. Compared with those living on the land, marine bacteria exhibit high diversity in species, genes and ecological functions, valuable for both fundamental studies and biotechnological applications.[Objective] Isolation and identification of some culturable bacteria from the sea area of Rizhao for screening of agarase producing strains.[Methods] A total of 73 strains were isolated and their 16S rRNA genes were sequenced. Agarsae activity of agar-digesting strains was determined.[Results] These isolates belong to 34 genera, 13 family and 4 phyla, showing rich species diversity. Furthermore, 16S rRNA gene sequence analysis also showed that among these 73 strains, 18 strains potentially represented novel species. Our results also showed that 5 strains were positive for agarase activity and the highest agarase activity of these strains was determined to be 2.17±0.04 U/mL.[Conclusion] This study widens our understanding for the diversity of marine bacteria in species and agarase activity.

    参考文献
    [1] Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 2007, 5(10):782-791.
    [2] Zheng TL, Xue XZ, Li FD. The role of marine microorganisms in the ecological environment. Marine Sciences, 1994, (3):35-38. (in Chinese)郑天凌, 薛雄志, 李福东. 海洋微生物在生态环境中的作用. 海洋科学, 1994, (3):35-38.
    [3] Wilms R, Köpke B, Sass H, Chang TS, Cypionka H, Engelen B. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ mental Microbiology, 2006, 8(4):709-719.
    [4] Morrice LM, McLean MW, Williamson FB, Long WF. β-agarases I and II from Pseudomonas atlantica. Purifications and some properties. European Journal of Biochemistry, 1983, 135(3):553-558.
    [5] Kim SG, Pheng S, Lee YJ, Eom MK, Shin DH. Agarivorans aestuarii sp. nov., an agar-degrading bacterium isolated from a tidal flat. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(8):3119-3124.
    [6] Jahromi ST, Barzkar N. Future direction in marine bacterial agarases for industrial applications. Applied Microbiology and Biotechnology, 2018, 102(16):6847-6863.
    [7] Zhang WW, Sun L. Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Applied and Environmental Microbiology, 2007, 73(9):2825-2831.
    [8] Kang DR, Yoon GY, Cho J, Lee SJ, Park HJ, Kang TH, Han HD, Park WS, Yoon YK, Park YM, Jung ID. Neoagarooligosaccharides prevent septic shock by modulating A20-and cyclooxygenase-2-mediated interleukin-10 secretion in a septic-shock mouse model. Biochemical and Biophysical Research Communications, 2017, 486(4):998-1004.
    [9] Yang JH, Cho SS, Kim KM, Kim JY, Kim EJ, Park EY, Lee JH, Ki SH. Neoagarooligosaccharides enhance the level and efficiency of LDL receptor and improve cholesterol homeostasis. Journal of Functional Foods, 2017, 38:529-539.
    [10] Wang W, Liu P, Hao C, Wu LJ, Wan WJ, Mao XZ. Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways. Scientific Reports, 2017, 7:44252.
    [11] Felsenstein J. Evolutionary trees from DNA sequences:a maximum likelihood approach. Journal of Molec ular Evolution, 1981, 17(6):368-376.
    [12] Lu JW, Zhang XQ, Du LL, Yang ZJ, Wu M, Lu LD. Bacterial isolation and diversity analysis of four seawater sampling sites of the East China Sea and the South China Sea. Journal of Zhejiang University (Science Edition), 2012, 39(4):443-449. (in Chinese)卢婧雯, 张心齐, 杜丽丽, 杨志坚, 吴敏, 卢龙斗. 中国东海及南海近海4采样点海水可培养细菌的多样性研究. 浙江大学学报(理学版), 2012, 39(4):443-449.
    [13] Chen RW, Wang KX, He YQ, Tian XP, Long LJ. Diversity of cultured bacteria isolated from a deep see sediment in South China Sea. Biotic Resources, 2018, 40(4):321-333. (in Chinese)陈柔雯, 王可欣, 何媛秋, 田新朋, 龙丽娟. 一份南海深海沉积物样品中可培养细菌的多样性. 生物资源, 2018, 40(4):321-333.
    [14] Liu YJ, Tian XP, Huang XF, Long LJ, Zhang S. Diversity of cultivable bacteria isolated from marine sediment environments in South China Sea. Microbiology China, 2014, 41(4):661-673. (in Chinese)刘玉娟, 田新朋, 黄小芳, 龙丽娟, 张偲. 中国南海沉积环境可培养细菌多样性研究. 微生物学通报, 2014, 41(4):661-673.
    [15] Long C, Liu XY, Lu XL, Jiao BH. Studies on the secondary metabolites of a marine Sulfitobacter sp. (M44). Chinese Journal of Antibiotics, 2012, 37(4):254-257. (in Chinese)龙聪, 刘小宇, 卢小玲, 焦炳华. 海洋亚硫酸杆菌M44的代谢产物研究. 中国抗生素杂志, 2012, 37(4):254-257.
    [16] Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(2):346-351.
    [17] Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(1):249-266.
    [18] Xie XZ, Lin J, Xie Y, Ye XY. Separation and purification of agarase and study on its properties. China Biotechnology, 2017, 37(1):46-52. (in Chinese)谢喜珍, 林娟, 谢勇, 叶秀云. 海洋来源琼胶酶的分离纯化及酶学性质研究. 中国生物工程杂志, 2017, 37(1):46-52.
    [19] Fu XT, Pan CH, Lin H, Kim SM. Gene cloning, expression, and characterization of a β-Agarase, AgaB34, from Agarivorans albus YKW-34. Journal of Microbiology and Biotechnology, 2009, 19(3):257-264.
    [20] Liu TW, Zhu XS, Chen MQ, Zhang P, Guo S, Sun PY, Wang Y. Optimization of the agarase-producing fermentation conditions in strain Agarivorans albus RZW1-1. Genomics and Applied Biology, 2018, 37(10):4372-4379. (in Chinese)刘婷威, 朱新术, 陈梦仟, 张鹏, 郭帅, 孙朋洋, 王燕. Agarivorans albus RZW1-1产琼胶酶的发酵条件优化. 基因组学与应用生物学, 2018, 37(10):4372-4379.
    [21] Ivanova EP, Sawabe T, Gorshkova NM, Svetashev VI, Mikhailov VV, Nicolau DV, Christen R. Shewanella japonica sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(3):1027-1033.
    [22] Martin M, Barbeyron T, Martin R, Portetelle D, Michel G, Vandenbol M. The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria. Frontiers in Microbiology, 2015, 6:1487.
    [23] Yoon SY, Lee HM, Kong JN, Kong KH. Secretory expression and enzymatic characterization of recombinant Agarivorans albus β-agarase in Escherichia coli. Preparative Biochemistry and Biotechnology, 2017, 47(10):1037-1042.
    [24] Zhang PJ, Zhang JR, Zhang LJ, Sun JN, Li Y, Wu L, Zhou JH, Xue CH, Mao XZ. Structure-based design of agarase AgWH50C from Agarivorans gilvus WH0801 to enhance thermostability. Applied Microbiology and Biotechnology, 2019, 103(3):1289-1298.
    [25] Lin BK, Lu GY, Song Y, Xie RQ, Chen HL, Hu Z. The agar-degrading enzymatic system of marine bacterium Agarivorans sp. HZ105. Biotechnology Bulletin, 2015, 31(1):160-166. (in Chinese). 林伯坤, 陆国永, 宋燕, 谢锐权, 陈鸿霖, 胡忠. 海洋细菌Agarivorans sp. HZ105的琼胶降解酶系. 生物技术通报, 2015, 31(1):160-166.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘昂,王爽,杜峰,薛庆节,李秀真. 黄海日照海域部分可培养细菌的分离、初步鉴定及产琼胶酶细菌的筛选[J]. 微生物学报, 2019, 59(11): 2240-2250

复制
分享
文章指标
  • 点击次数:1080
  • 下载次数: 1536
  • HTML阅读次数: 2253
  • 引用次数: 0
历史
  • 收稿日期:2019-04-08
  • 最后修改日期:2019-06-24
  • 在线发布日期: 2019-11-01
文章二维码