镉对超积累和非超积累生态型东南景天内生细菌多样性的影响
作者:
基金项目:

国家自然科学基金(41471264)


Impacts of cadmium on the diversity of endophytic bacteria associated with hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    重金属胁迫对植物内生细菌群落结构的影响在很大程度上是未知的,目前也很少有研究超积累植物内生细菌的群落结构与多样性对根际土壤中重金属的响应。[目的] 探索在不同镉污染水平下,超积累(HE)和非超积累生态型(NHE)东南景天的根系、茎和叶片中内生细菌的群落结构与多样性的变化及其差异性,试图从植物-内生菌之间的相互关系的角度补充解释2种生态型东南景天对有效态镉忍耐和积累能力的差异。[方法] 采用Illumina新一代测序方法分析了在不同Cd2+浓度土壤上生长的2种生态型东南景天根、茎和叶中的内生细菌群落结构。[结果] 高浓度Cd2+抑制NHE东南景天的生长,内生细菌的丰富度和多样性也降低;然而,高浓度Cd2+促进HE东南景天的生长,茎和根系内生细菌的丰富度增加。在3种土壤上,2种生态型东南景天叶片、茎和根系内生细菌均以变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)占优势。随着土壤中Cd2+浓度的增加,HE东南景天叶片中Gammaproteobacteria纲、Negativicutes纲和Clostridia纲的相对丰度显著增加,茎中Alphaproteobacteria纲的相对丰度显著增加,Clostridia纲的相对丰度显著减少;NHE东南景天叶片中Alphaproteobacteria纲、Gammaproteobacteria纲和Clostridia纲的相对丰度没有显著变化,茎中Negativicutes纲的相对丰度显著减少,根系中Betaproteobacteria纲和Clostridia纲的相对丰度显著减少,Negativicutes纲却显著增加。在高Cd2+污染土壤(50 mg/kg)上,HE东南景天叶片中Sphingomonas属和茎中Veillonella属的相对丰度均大于NHE,且HE东南景天根系内生细菌的第一、第二、第三优势菌VeillonellaSphingomonas、Prevotella属细菌均没有出现在NHE东南景天根系。[结论] 土壤Cd2+污染水平对2种生态型东南景天叶、茎、根中的内生菌群落结构有显著影响。

    Abstract:

    The effects of heavy metal stress on the community structure of endophytic bacteria in plants are not well understood. To date, few studies have investigated the response of community structure and diversity of endophytic bacteria in hyperaccumulating plants to heavy metals present in soil rhizosphere. [Objective] The objectives of this study were to explore the changes and differences in community structure and diversity of endophytic bacteria in roots, stems, and leaves of hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii under different levels of Cd2+ contamination; as well as to explain their differences in ability to tolerate and accumulate the available cadmium by the two ecotypes of Sedum alfredii, based on the mutual relationship between plant and endophyte. [Methods] The community structures of endophytic bacteria in the roots, stems, and leaves of the two ecotypes of Sedum alfredii grown on soils with different Cd2+ concentrations were analyzed by Illumina high-throughput sequencing technique. [Results] High concentrations of Cd2+ inhibited the growth of NHE Sedum alfredii and decreased the richness and diversity of endophytic bacteria, whereas it promoted the growth of HE Sedum alfredii and increased the richness of endophytic bacteria in stems and roots. Among the three tested soils, the endophytic bacteria in leaves, stems, and roots of two ecotypes of Sedum alfredii were all dominated by Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. For HE Sedum alfredii, the relative abundances of Gammaproteobacteria, Negativicutes, and Clostridia in leaves as well as Alphaproteobacteria in stems increased significantly with the soil Cd2+ concentration, whereas the relative abundances of Clostridia decreased significantly. For NHE Sedum alfredii, with the increase in soil Cd2+ concentration, the relative abundances for Alphaproteobacteria, Gammaproteobacteria, and Clostridia in leaves did not show significant change, while those for Negativicutes in stems as well as Betaproteobacteria and Clostridia in roots decreased significantly, and those for Negativicutes in roots increased significantly. In highly Cd2+-contaminated soils (50 mg/kg), the relative abundances of Sphingomonas in leaves and Veillonella in stems of HE Sedum alfredii were higher than those for NHE Sedum alfredii. Meanwhile, the first, second, and third predominant endophytic bacteria (i.e., Veillonella, Sphingomonas, and Prevotella) that were present in the roots of HE Sedum alfredii did not appear in roots of NHE Sedum alfredii.[Conclusion] The Cd2+-contamination level in soils had significant impacts on the community structure of endophytic bacteria in leaves, stems, and roots of the two ecotypes of Sedum alfredii.

    参考文献
    [1] Yang XE, Long XX, Ni WZ, Fu CX. Sedum alfredii H:a new Zn hyperaccumulating plant first found in China. Chinese Science Bulletin, 2002, 47(19):1634-1637.
    [2] Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil, 2004, 259(1/2):181-189.
    [3] Yang XE, Li TQ, Long XX, Xiong YH, He ZL, Stoffella PJ. Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance. Plant and Soil, 2006, 284(1/2):109-119.
    [4] Xiong YH, Yang XE, Ye ZQ, He ZL. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering, 2004, 39(11/12):2925-2940.
    [5] Wu QT, Wei ZB, Ouyang Y. Phytoextraction of Metal-contaminated soil by Sedum alfredii H:effects of chelator and co-planting. Water, Air, and Soil Pollution, 2007, 180(1/4):131-139.
    [6] Wei ZB, Guo XF, Wu QT, Long XX, Penn CJ. Phytoextraction of heavy metals from contaminated soil by co-cropping with chelator application and assessment of associated leaching risk. International Journal of Phytoremediation, 2011, 13(7):717-729.
    [7] Xiao WD, Wang H, Li TQ, Zhu ZQ, Zhang J, He ZL, Yang XE. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environmental Science and Pollution Research, 2013, 20(1):380-389.
    [8] Ni WZ, Sun Q, Yang X. Growth and zinc accumulation of Sedum alfredii Hance-a Zn hyperaccumulator as affected by phosphorus application. Bulletin of Environmental Contamination and Toxicology, 2004, 72(4):756-762.
    [9] Zhu E, Liu D, Li JG, Li TQ, Yang XE, He ZL, Stoffella PJ. Effect of nitrogen fertilizer on growth and cadmium accumulation in Sedum alfredii Hance. Journal of Plant Nutrition, 2010, 34(1):115-126.
    [10] Huang HG, Wang K, Zhu ZQ, Li TQ, He ZL, Yang XE, Gupta DK. Moderate phosphorus application enhances Zn mobility and uptake in hyperaccumulator Sedum alfredii. Environmental Science and Pollution Research, 2013, 20(5):2844-2853.
    [11] Wang K, Zhang J, Zhu ZQ, Huang HG, Li TQ, He ZL, Yang XE, Alva A. Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs co-contaminated soil by Sedum alfredii. Journal of Soils and Sediments, 2012, 12(7):1089-1099.
    [12] Li WC, Ye ZH, Wong MH. Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant and Soil, 2010, 326(1/2):453-467.
    [13] Long XX, Chen XM, Chen YG, Wong-Chung WJ, Wei ZB, Wu QT. Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World Journal of Microbiology and Biotechnology, 2011, 27(5):1197-1207.
    [14] Chen B, Shen JG, Zhang XC, Pan FS, Yang XE, Feng Y. The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One, 2014, 9(9):e106826.
    [15] Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes:recent developments and applications. FEMS Microbiology Letters, 2008, 278(1):1-9.
    [16] Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S. Plant-endophyte symbiosis, an ecological perspective. Applied Microbiology and Biotechnology, 2015, 99(7):2955-2965.
    [17] Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D. The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. International Journal of Phytoremediation, 2001, 3(2):173-187.
    [18] Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 2004, 70(5):2667-2677.
    [19] Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbial Ecology, 2007, 53(2):306-316.
    [20] Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld G. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation, 2009, 11(3):251-267.
    [21] Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology, 2010, 101(2):501-509.
    [22] Luo SL, Chen L, Chen JL, Xiao X, Xu TY, Wan Y, Rao C, Liu CB, Liu YT, Lai C, Zeng GM. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere, 2011, 85(7):1130-1138.
    [23] Pan FS, Chen B, Ma XX, Yang XE, Feng Y. Isolation and characterization of a specific endophytic bacterium from the Cd hyperaccumulator Sedum alfredii Hance. Acta Scientiae Circumstantiae, 2014, 34(2):449-456. (in Chinese)潘风山, 陈宝, 马晓晓, 杨肖娥, 冯英. 一株镉超积累植物东南景天特异内生细菌的筛选及鉴定. 环境科学学报, 2014, 34(2):449-456.
    [24] Zhu LJ, Guan DX, Luo J, Rathinasabapathi B, Ma LQ. Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida. Chemosphere, 2014, 113:9-16.
    [25] Zhang WH, Chen W, He LY, Wang Q, Sheng XF. Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum. Ecotoxicology and Environmental Safety, 2015, 120:369-376.
    [26] Weyens N, van der Lelie D, Taghavi S, Vangronsveld J. Phytoremediation:plant-endophyte partnerships take the challenge. Current Opinion in Biotechnology, 2009, 20(2):248-254.
    [27] Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 2012, 30(6):1562-1574.
    [28] Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 2016, 174:14-25.
    [29] Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 2006, 19(8):827-837.
    [30] Ding T, Palmer MW, Melcher U. Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC Microbiology, 2013, 13:1.
    [31] Bodenhausen N, Horton MW, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One, 2013, 8(2):e56329.
    [32] Chen B, Shen JG, Zhang XC, Pan FS, Yang XE, Feng Y. The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One, 2014, 9(9):e106826.
    [33] Qin N, Li DF, Yang RF. Next-generation sequencing technologies and the application in microbiology-A review. Acta Microbiologica Sinica, 2011, 51(4):445-457. (in Chinese)秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用. 微生物学报, 2011, 51(4):445-457.
    [34] Cai YA, Li D, Bi XJ, Zeng HP, Zhang J. Analysis of microbial community structure and functional bacteria in a biofilter with different sequencing technologies. China Environmental Science, 2016, 36(6):1830-1834. (in Chinese)蔡言安, 李冬, 毕学军, 曾辉平, 张杰. 基于不同测序技术的生物群落结构及功能菌分析. 中国环境科学, 2016, 36(6):1830-1834.
    [35] Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488(7409):86-90.
    [36] Manter DK, Delgado JA, Holm DG, Stong RA. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microbial Ecology, 2010, 60(1):157-166.
    [37] Williams TR, Moyne AL, Harris LJ, Marco ML. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One, 2013, 8(7):e68642.
    [38] Ren GD, Zhang HY, Lin XG, Zhu JG, Jia ZJ. Response of phyllosphere bacterial communities to elevated CO2 during rice growing season. Applied Microbiology and Biotechnology, 2014, 98(22):9459-9471.
    [39] Romero FM, Marina M, Pieckenstain FL. The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiology Letters, 2014, 351(2):187-194.
    [40] Shi YW, Yang HM, Zhang T, Sun J, Lou K. Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Applied Microbiology and Biotechnology, 2014, 98(14):6375-6385.
    [41] 郭荣荣. 两种生态型东南景天不可培养内生细菌的多样性差异及其侵染特征. 华南农业大学硕士论文, 2015.
    [42] Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 2013, 64:807-838.
    [43] Sánchez-López AS, Thijs S, Beckers B, González-Chávez MC, Weyens N, Carrillo-González R, Vangronsveld J. Community structure and diversity of endophytic bacteria in seeds of three consecutive generations of Crotalaria pumila growing on metal mine residues. Plant and Soil, 2018, 422(1/2):51-66.
    [44] Chen B, Zhang YB, Rafiq MT, Khan KY, Pan FS, Yang XE, Feng Y. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12:effects on plant growth and root exudates. Chemosphere, 2014, 117:367-373.
    [45] Wei Y, Hou H, Shangguan YX, Li JN, Li FS. Genetic diversity of endophytic bacteria of the manganese-hyperaccumulating plant Phytolacca americana growing at a manganese mine. European Journal of Soil Biology, 2014, 62:15-21.
    [46] Gottel NR, Castro HF, Kerley M, Yang ZM, Pelletier DA, Podar M, Karpinets T, Uberbacher E, Tuskan GA, Vilgalys R, Doktycz MJ, Schadt CW. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Applied and Environmental Microbiology, 2011, 77(17):5934-5944.
    [47] Fidalgo C, Henriques I, Rocha J, Tacão M, Alves A. Culturable endophytic bacteria from the salt marsh plant Halimione portulacoides:phylogenetic diversity, functional characterization, and influence of metal(loid) contamination. Environmental Science and Pollution Research, 2016, 23(10):10200-10214.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邹淑华,邓平香,龙新宪. 镉对超积累和非超积累生态型东南景天内生细菌多样性的影响[J]. 微生物学报, 2019, 59(12): 2306-2322

复制
分享
文章指标
  • 点击次数:893
  • 下载次数: 1446
  • HTML阅读次数: 1539
  • 引用次数: 0
历史
  • 收稿日期:2019-01-22
  • 最后修改日期:2019-05-20
  • 在线发布日期: 2019-12-03
文章二维码