红树林沉积物中微生物驱动硫循环研究进展
作者:
基金项目:

中山大学百人计划(38000-18821107);千人计划(38000-18821105);“十三五”优先发展领域专项(38000-31650020)


Progress in studying microbially-driven sulfur cycling in mangrove sediments
Author:
  • Anqi Fang

    Anqi Fang

    School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Zhili He

    Zhili He

    School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519000, Guangdong Province, China;College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Cheng Wang

    Cheng Wang

    School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519000, Guangdong Province, China;South China Sea Institution, Sun Yat-sen University, Guangzhou 510275, Guangdong Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Chao Yang

    Chao Yang

    Agriculture and Agri-Food Canada, Swift Current Research and Development Center, Swift Current S9H 3X2 SK, Canada
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Qingyun Yan

    Qingyun Yan

    School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519000, Guangdong Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [102]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    红树林滨海湿地是在周期性咸水、淡水作用下形成的特殊生态系统,其沉积物中有机质含量丰富,微生物驱动的营养物质循环活跃。由于红树林沉积物中硫酸盐含量高、硫化物种类多,因此红树林是研究硫元素生物地球化学循环过程和机制的理想系统。本文综述了红树林生态系统中主要的硫元素循环过程,重点总结了硫氧化和硫酸盐还原过程及其功能微生物,分析了影响硫氧化和硫酸盐还原的主要环境因素,并对红树林沉积物中微生物驱动硫循环的重点研究方向进行了展望。鉴于微生物驱动的硫循环过程耦合碳、氮和金属元素循环,本文可为深入探究微生物驱动的生物地球化学元素循环耦合机制提供参考。

    Abstract:

    Mangrove forest is a special coastal wetland ecosystem and formed by the periodic mixing of freshwater and seawater. The sediment of mangrove wetland is rich in organic matters, accelerating nutrient cycling driven by resident microbes. Due to high concentrations of sulfate and a variety of sulfide in mangrove sediment, mangrove wetland has been considered as an ideal ecosystem to explore sulfur cycling. This review aims to understand the microbially-driven sulfur cycling, especially sulfur oxidation and sulfate reduction processes in the sediment of mangrove wetland. The major environmental factors affecting sulfur oxidation and sulfate reduction are also discussed. Moreover, future research expectations for microbially-driven sulfur cycling in mangrove ecosystem are indicated.

    参考文献
    [1] Kathiresan K, Bingham BL. Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 2001, 40:81-251.
    [2] Weiss C, Weiss J, Boy J, Iskandar I, Mikutta R, Guggenberger G. Soil organic carbon stocks in estuarine and marine mangrove ecosystems are driven by nutrient colimitation of P and N. Ecology and Evolution, 2016, 6(14):5043-5056.
    [3] Thatoi H, Behera BC, Mishra RR, Dutta SK. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems:a review. Annals of Microbiology, 2013, 63(1):1-19.
    [4] Basak P, Pramanik A, Sengupta S, Nag S, Bhattacharyya A, Roy D, Pattanayak R, Ghosh A, Chattopadhyay D, Bhattacharyya M. Bacterial diversity assessment of pristine mangrove microbial community from dhulibhashani, sundarbans using 16S rRNA gene tag sequencing. Genomics Data, 2016, 7:76-78.
    [5] Zhou YW, Zhao B, Peng YS, Chen GZ. Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments. Marine Pollution Bulletin, 2010, 60(8):1319-1324.
    [6] Peng YS, Diao JM, Zheng MX, Guan DS, Zhang RD, Chen GZ, Lee SY. Early growth adaptability of four mangrove species under the canopy of an introduced mangrove plantation:implications for restoration. Forest Ecology and Management, 2016, 373:179-188.
    [7] Burns KA, Garrity SD, Levings SC. How many years until mangrove ecosystems recover from catastrophic oil spills? Marine Pollution Bulletin, 1993, 26(5):239-248.
    [8] Cabral L, Lacerda Júnior GV, Pereira de Sousa ST, Franco Dias AC, Cadete LL, Andreote FD, Hess M, de Oliveira VM. Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities. Environmental Pollution, 2016, 216:460-469.
    [9] Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F. A world without mangroves? Science, 2007, 317(5834):41-42.
    [10] Yun JL, Deng YC, Zhang HX. Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island. Applied Microbiology and Biotechnology, 2017, 101(15):6241-6252.
    [11] Ottoni JR, Cabral L, Pereira de Sousa ST, Lacerda Junior GV, Domingos DF, Soares Junior FL, Pinheiro da Silva MC, Marcon J, Franco Dias AC, de Melo IS, de Souza AP, Andreote FD, de Oliveira VM. Functional metagenomics of oil-impacted mangrove sediments reveals high abundance of hydrolases of biotechnological interest. World Journal of Microbiology and Biotechnology, 2017, 33(7):141.
    [12] Yang Q, Lei AP, Li FL, Liu LN, Zan QJ, Shin PKS, Cheung SG, Tam NFY. Structure and function of soil microbial community in artificially planted Sonneratia apetala and S. caseolaris forests at different stand ages in Shenzhen Bay, China. Marine Pollution Bulletin, 2014, 85(2):754-763.
    [13] Barreto CR, Morrissey EM, Wykoff DD, Chapman SK. Co-occurring mangroves and salt marshes differ in microbial community composition. Wetlands, 2018, 38(3):497-508.
    [14] Chen Q, Zhao Q, Li J, Jian SG, Ren H. Mangrove succession enriches the sediment microbial community in South China. Scientific Reports, 2016, 6:27468.
    [15] Ghizelini AM, Santana Mendonca-Hagler LC, Macrae A. Microbial diversity in Brazilian mangrove sediments-a mini review. Brazilian Journal of Microbiology, 2012, 43(4):1242-1254.
    [16] Ferreira TO, Otero XL, de Souza VS, Vidal-Torrado P, Macías F, Firme LP. Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo). Journal of Soils and Sediments, 2010, 10(6):995-1006.
    [17] Zhang RG. Study on sulphur accumulation and cycling in mangrove forest in pear river mouth. Tropical and Subtropical Soil Science, 1996, 5(2):67-73. (in Chinese)张汝国. 珠江口红树林硫的累积和循环研究. 热带亚热带土壤科学, 1996, 5(2):67-73.
    [18] Sherman RE, Fahey TJ, Howarth RW. Soil-plant interactions in a neotropical mangrove forest:Iron, phosphorus and sulfur dynamics. Oecologia, 1998, 115(4):553-563.
    [19] Schoonen MAA. Sulfur Cycle. Dordrecht:Springer Netherlands, 1998.
    [20] Holmer M, Storkholm P. Sulphate reduction and sulphur cycling in lake sediments:a review. Freshwater Biology, 2001, 46(4):431-451.
    [21] Wu H, Ding ZH, Liu Y, Liu JL, Yan HY, Pan JY, Li LQ, Lin HN, Lin GH, Lu HL. Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China. Journal of Environmental Sciences, 2011, 23(1):14-21.
    [22] Nedwell DB, Blackburn TH, Wiebe WJ. Dynamic nature of the turnover of organic carbon, nitrogen and sulphur in the sediments of a Jamaican mangrove forest. Marine Ecology Progress Series, 1994, 110(2/3):223-231.
    [23] Pellerin A, Bui TH, Rough M, Mucci A, Canfield DE, Wing BA. Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling:a case study from Mangrove Lake, Bermuda. Geochimica et Cosmochimica Acta, 2015, 149:152-164.
    [24] Koch T, Dahl C. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. The ISME Journal, 2018, 12(10):2479-2491.
    [25] Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiology Reviews, 2009, 33(6):999-1043.
    [26] Liu Y, Jiang LJ, Shao ZZ. Advances in sulfur-oxidizing bacterial taxa and their sulfur oxidation pathways. Acta Microbiologica Sinica, 2018, 58(2):191-201. (in Chinese)刘阳, 姜丽晶, 邵宗泽. 硫氧化细菌的种类及硫氧化途径的研究进展. 微生物学报, 2018, 58(2):191-201.
    [27] Krishnani KK, Kathiravan V, Natarajan M, Kailasam M, Pillai SM. Diversity of sulfur-oxidizing bacteria in greenwater system of coastal aquaculture. Applied Biochemistry and Biotechnology, 2010, 162(5):1225-1237.
    [28] Dahl C. Sulfur metabolism in phototrophic bacteria//Hallenbeck PC. Modern Topics in the Phototrophic Prokaryotes:Metabolism, Bioenergetics, and Omics. Cham:Springer International Publishing, 2017:27-66.
    [29] Anandham R, Indiragandhi P, Madhaiyan M, Ryu KY, Jee HJ, Sa TM. Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Research in Microbiology, 2008, 159(9/10):579-589.
    [30] Muyzer G, Stams AJM. The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 2008, 6(6):441-454.
    [31] Luo JF, Tan XQ, Liu KX, Lin WT. Survey of sulfur-oxidizing bacterial community in the Pearl River water using soxB, sqr, and dsrA as molecular biomarkers. 3 Biotech, 2018, 8(1):73.
    [32] Belila A, Snoussi M, Hassan A. Rapid qualitative characterization of bacterial community in eutrophicated wastewater stabilization plant by T-RFLP method based on 16S rRNA genes. World Journal of Microbiology and Biotechnology, 2012, 28(1):135-143.
    [33] Liang JB, Chen YQ, Lan CY, Tam NFY, Zan QJ, Huang LN. Recovery of novel bacterial diversity from mangrove sediment. Marine Biology, 2007, 150(5):739-747.
    [34] Zhao JY, Fu YN, Zhao CG, Yang SP, Qu YB, Jiao NZ. Identification and characterization of a purple sulfur bacterium from mangrove with rhodopin as predominant carotenoid. Acta Microbiologica Sinica, 2011, 51(10):1318-1325. (in Chinese)赵江艳, 傅英楠, 赵春贵, 杨素萍, 曲音波, 焦念志. 一株高含玫红品的红树林海洋紫色硫细菌分离鉴定及特性. 微生物学报, 2011, 51(10):1318-1325.
    [35] dos Santos HF, Cury JC, do Carmo FL, dos Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS. Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing:bacterial proxies for oil pollution. PLoS One, 2011, 6(3):e16943.
    [36] Varon-Lopez M, Dias ACF, Fasanella CC, Durrer A, Melo IS, Kuramae EE, Andreote FD. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments. Environmental Microbiology, 2014, 16(3):845-855.
    [37] Tourova TP, Slobodova NV, Bumazhkin BK, Kolganova TV, Muyzer G, Sorokin DY. Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker. FEMS Microbiology Ecology, 2013, 84(2):280-289.
    [38] Deborde J, Marchand C, Molnar N, Patrona LD, Meziane T. Concentrations and fractionation of carbon, iron, sulfur, nitrogen and phosphorus in mangrove sediments along an intertidal gradient (semi-arid climate, New Caledonia). Journal of Marine Science and Engineering, 2015, 3(1):52-72.
    [39] Mahmood Q, Hu BL, Cai J, Zheng P, Azim MR, Jilani G, Islam E. Isolation of Ochrobactrum sp. QZ2 from sulfide and nitrite treatment system. Journal of Hazardous Materials, 2009, 165(1/3):558-565.
    [40] Mishra RR, Swain MR, Dangar TK, Thatoi H. Diversity and seasonal fluctuation of predominant microbial communities in Bhitarkanika, a tropical mangrove ecosystem in India. Revista De Biologia Tropical, 2012, 60(2):909-924.
    [41] Zhang XY, Hu BX, Ren HJ, Zhang J. Composition and functional diversity of microbial community across a mangrove-inhabited mudflat as revealed by 16S rDNA gene sequences. Science of the Total Environment, 2018, 633:518-528.
    [42] Kristensen E, Holmer M, Bussarawit N. Benthic metabolism and sulfate reduction in a Southeast Asian mangrove swamp. Marine Ecology Progress Series, 1991, 73:93-103.
    [43] Kristensen E, Holmer M, Banta GT, Jensen MH, Hansen K. Carbon, nitrogen and sulfur cycling in sediments of the Ao Nam Bor mangrove forest, Phuket, Thailand:a review. Phuket Marine Biological Center Research Bulletin, 1995, 60:37-64.
    [44] Eschemann A, Kühl M, Cypionka H. Aerotaxis in Desulfovibrio. Environmental Microbiology, 1999, 1(6):489-494.
    [45] Cypionka H. Oxygen respiration by Desulfovibrio species. Annual Review of Microbiology, 2000, 54:827-848.
    [46] Balk M, Keuskamp JA, Laanbroek HJ. Potential for sulfate reduction in mangrove forest soils:comparison between two dominant species of the Americas. Frontiers in Microbiology, 2016, 7:1855.
    [47] Lyimo TJ, Pol A, den Camp HJMO. Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. Ambio, 2002, 31(7/8):614-616.
    [48] Jørgensen BB. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnology and Oceanography, 1977, 22(5):814-832.
    [49] Pérez-Jiménez JR, Kerkhof LJ. Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB). Applied and Environmental Microbiology, 2005, 71(2):1004-1011.
    [50] Barton LL, Fauque GD. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Advances in Applied Microbiology, 2009, 68:41-98.
    [51] Kleindienst S, Herbst FA, Stagars M, von Netzer F, von Bergen M, Seifert J, Peplies J, Amann R, Musat F, Lueders T, Knittel K. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. The ISME Journal, 2014, 8(10):2029-2044.
    [52] van Houten RT, Yun SY, Lettinga G. Thermophilic sulphate and sulphite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source. Biotechnology and Bioengineering, 1997, 55(5):807-814.
    [53] Taketani RG, Yoshiura CA, Dias ACF, Andreote FD, Tsai SM. Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove. Antonie van Leeuwenhoek, 2010, 97(4):401-411.
    [54] Quillet L, Besaury L, Popova M, Paissé S, Deloffre J, Ouddane B. Abundance, diversity and activity of sulfate-reducing prokaryotes in heavy metal-contaminated sediment from a salt marsh in the Medway estuary (UK). Marine Biotechnology, 2012, 14(3):363-381.
    [55] Dini Andreote F, Jiménez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F, Fasanella CC, Lopez MV, Baena S, Taketani RG, de Melo IS. The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS One, 2012, 7(6):e38600.
    [56] Ding H, Yao SP, Liu GJ, Liu CH. Diversity and vertical distribution of culturable sulfate-reducing bacteria in coastal mangrove swamps from Hainan island, China. Geological Journal of China Universities, 2016, 22(4):621-630. (in Chinese)丁海, 姚素平, 刘桂建, 刘常宏. 海南红树林湿地可培养硫酸盐还原菌的垂直分布特征研究. 高校地质学报, 2016, 22(4):621-630.
    [57] Lyimo TJ, Pol A, Harhangi HR, Jetten MSM, den Camp HJMO. Anaerobic oxidation of dimethylsulfide and methanethiol in mangrove sediments is dominated by sulfate-reducing bacteria. FEMS Microbiology Ecology, 2009, 70(3):483-492.
    [58] Gomes NCM, Cleary DFR, Pires ACC, Almeida A, Cunha A, Mendonça-Hagler LCS, Smalla K. Assessing variation in bacterial composition between the rhizospheres of two mangrove tree species. Estuarine, Coastal and Shelf Science, 2014, 139:40-45.
    [59] Zuberer DA, Silver WS. Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Applied and Environmental Microbiology, 1978, 35(3):567-575.
    [60] Blazejak A, Schippers A. Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing prokaryotes in marine sediments of the Peru continental margin and the Black Sea. Frontiers in Microbiology, 2011, 2:253.
    [61] Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, Van der Lelie D, Vanbroekhoven K. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. Journal of Microbiological Methods, 2006, 66(2):194-205.
    [62] Pelikan C, Herbold CW, Hausmann B, Müller AL, Pester M, Loy A. Diversity analysis of sulfite-and sulfate-reducing microorganisms by multiplex dsrA and dsrB amplicon sequencing using new primers and mock community-optimized bioinformatics. Environmental Microbiology, 2016, 18(9):2994-3009.
    [63] Dar SA, Yao L, van Dongen U, Kuenen JG, Muyzer G. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Applied and Environmental Microbiology, 2007, 73(2):594-604.
    [64] Tian HM, Gao PK, Chen ZH, Li YS, Li Y, Wang YS, Zhou JF, Li GQ, Ma T. Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Frontiers in Microbiology, 2017, 8:143.
    [65] Leloup J, Petit F, Boust PD, Deloffre J, Bally G, Clarisse O, Quillet L. Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the Seine estuary (France). Microbial Ecology, 2005, 50(3):307-314.
    [66] Bai SJ, Li JW, He ZL, van Nostrand JD, Tian Y, Lin GH, Zhou JZ, Zheng TL. GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves. Applied Microbiology and Biotechnology, 2013, 97(15):7035-7048.
    [67] Kostka JE, Roychoudhury A, van Cappellen P. Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry, 2002, 60(1):49-76.
    [68] Brandt KK, Vester F, Jensen AN, Ingvorsen K. Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the great salt lake (Utah, USA). Microbial Ecology, 2001, 41(1):1-11.
    [69] Pallud C, van Cappellen P. Kinetics of microbial sulfate reduction in estuarine sediments. Geochimica et Cosmochimica Acta, 2006, 70(5):1148-1162.
    [70] Connell WE, Patrick Jr WH. Sulfate reduction in soil:effects of redox potential and pH. Science, 1968, 159(3810):86-87.
    [71] Balk M, Keuskamp JA, Laanbroek HJ. Potential activity, size, and structure of sulfate-reducing microbial communities in an exposed, grazed and a sheltered, non-grazed mangrove stand at the Red Sea coast. Frontiers in Microbiology, 2015, 6:1478.
    [72] Dar SA, Kleerebezem R, Stams AJM, Kuenen JG, Muyzer G. Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Applied Microbiology and Biotechnology, 2008, 78(6):1045-1055.
    [73] Liao JL, Yao SP, Ding H. The characteristics and controlling factors of sulfur in the sediments of coastal mangrove peat. Geological Journal of China Universities, 2008, 14(4):620-630. (in Chinese)廖家隆, 姚素平, 丁海. 滨海红树林泥炭沉积物中硫的赋存特点及其控制因素. 高校地质学报, 2008, 14(4):620-630.
    [74] Attri K, Kerkar S, LokaBharathi PA. Ambient iron concentration regulates the sulfate reducing activity in the mangrove swamps of Diwar, Goa, India. Estuarine, Coastal and Shelf Science, 2011, 95(1):156-164.
    [75] Kristensen E, Mangion P, Tang M, Flindt MR, Holmer M, Ulomi S. Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests. Biogeochemistry, 2011, 103(1/3):143-158.
    [76] Das S, De M, Ganguly D, Maiti TK, Mukherjee A, Jana TK, De TK. Depth integrated microbial community and physico-chemical properties in mangrove soil of Sundarban, India. Advances in Microbiology, 2012, 2(3):234-240.
    [77] Saxena D, Lokabharathi PA, Chandramohan D. Sulfate reducing bacteria from mangrove swamps of goa, central west coast of India. Indian Journal of Marine Sciences, 1988, 17(2):153-157.
    [78] Loka Bharathi PA, Oak S, Chandramohan D. Sulfate-reducing bacteria from mangrove swamps Ⅱ:Their ecology and physiology. Oceanologica Acta, 1991, 14(2):163-171.
    [79] Burgin AJ, Yang WH, Hamilton SK, Silver WL. Beyond carbon and nitrogen:how the microbial energy economy couples elemental cycles in diverse ecosystems. Frontiers in Ecology and the Environment, 2011, 9(1):44-52.
    [80] Zhou JZ, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou AF, He ZL, Van Nostrand JD, Hazen TC, Stahl DA, Wall JD, Arkin AP. How sulphate-reducing microorganisms cope with stress:lessons from systems biology. Nature Reviews Microbiology, 2011, 9(6):452-466.
    [81] Antler G, Pellerin A. A critical look at the combined use of sulfur and oxygen isotopes to study microbial metabolisms in methane-rich environments. Frontiers in Microbiology, 2018, 9:519.
    [82] Lloyd KG, Lapham L, Teske A. An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Applied and Environmental Microbiology, 2006, 72(11):7218-7230.
    [83] Canfield DE, Stewart FJ, Thamdrup B, de Brabandere L, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O. A cryptic sulfur cycle in oxygen-minimum-zone waters off the chilean coast. Science, 2010, 330(6009):1375-1378.
    [84] Griffin BM, Schott J, Schink B. Nitrite, an electron donor for anoxygenic photosynthesis. Science, 2007, 316(5833):1870.
    [85] Stevens H, Ulloa O. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environmental Microbiology, 2008, 10(5):1244-1259.
    [86] Chai MW, Shen XX, Li RL, Qiu GY. The risk assessment of heavy metals in Futian mangrove forest sediment in Shenzhen Bay (South China) based on SEM-AVS analysis. Marine Pollution Bulletin, 2015, 97(1/2):431-439.
    [87] Holmer M, Kristensen E, Banta G, Hansen K, Jensen MH, Bussawarit N. Biogeochemical cycling of sulfur and iron in sediments of a south-east Asian mangrove, Phuket Island, Thailand. Biogeochemistry, 1994, 26(3):145——161.
    [88] Zhou YW, Peng YS, Li XL, Chen GZ. Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environmental Earth Sciences, 2011, 64(3):799-807.
    [89] Queiroz HM, Nóbrega GN, Otero XL, Ferreira TO. Are acid volatile sulfides (AVS) important trace metals sinks in semi-arid mangroves? Marine Pollution Bulletin, 2018, 126:318-322.
    [90] Ferreira TO, Otero XL, Vidal-Torrado P, Macías F. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma, 2007, 142(1/2):36-46.
    [91] Li J, Yu JY, Liu JC, Yan CL, Lu HL, Spencer KL. The effects of sulfur amendments on the geochemistry of sulfur, phosphorus and iron in the mangrove plant (Kandelia obovata (S. L.)) rhizosphere. Marine Pollution Bulletin, 2017, 114(2):733-741.
    [92] Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang QL. Methane emissions from wetlands:biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 2013, 19(5):1325-1346.
    [93] Bhatia A, Pathak H, Jain N, Singh PK, Singh AK. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains. Atmospheric Environment, 2005, 39(37):6976-6984.
    [94] Oremland RS, Marsh LM, Polcin S. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature, 1982, 296(5853):143-145.
    [95] Kiene RP, Oremland RS, Catena A, Miller LG, Capone DG. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Applied and Environmental Microbiology, 1986, 52(5):1037-1045.
    [96] Winfrey MR, Ward DM. Substrates for sulfate reduction and methane production in intertidal sediments. Applied and Environmental Microbiology, 1983, 45(1):193-199.
    [97] Schönheit P, Kristjansson JK, Thauer RK. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Archives of Microbiology, 1982, 132(3):285-288.
    [98] Nedwell DB, Banat IM. Hydrogen as an electron donor for sulfate-reducing bacteria in slurries of salt marsh sediment. Microbial Ecology, 1981, 7(4):305-313.
    [99] Abram JW, Nedwell DB. Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen. Archives of Microbiology, 1978, 117(1):89-92.
    [100] Pester M, Knorr KH, Friedrich MW, Wagner M, Loy A. Sulfate-reducing microorganisms in wetlands-fameless actors in carbon cycling and climate change. Frontiers in Microbiology, 2012, 3:72.
    [101] Lovley DR, Dwyer DF, Klug MJ. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Applied and Environmental Microbiology, 1982, 43(6):1373-1379.
    [102] Lin XL, Hetharua B, Lin L, Xu H, Zheng TL, He ZL, Tian Y. Mangrove sediment microbiome:adaptive microbial assemblages and their routed biogeochemical processes in Yunxiao mangrove national nature reserve, China. Microbial Ecology, 2019, 78(1):57-69, doi:10.1007/s00248-018-1261-6.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

方安琪,贺志理,王成,杨超,颜庆云. 红树林沉积物中微生物驱动硫循环研究进展[J]. 微生物学报, 2020, 60(1): 13-25

复制
分享
文章指标
  • 点击次数:1345
  • 下载次数: 1942
  • HTML阅读次数: 5822
  • 引用次数: 0
历史
  • 收稿日期:2019-03-20
  • 最后修改日期:2019-05-27
  • 在线发布日期: 2020-01-10
文章二维码