马铃薯全生育期内根际微生物组变化规律
作者:
基金项目:

四川省科技厅应用基础项目(2019YJ0546);四川省教育厅资助项目(17ZB0398);西昌学院高层次人才引进科研启动项目(50180108)


Community rhythms of rhizosphere microbiome during the whole life cycle of potato
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]陆生植物根际环境与土壤中的微生物菌群关系密切,其根际微生物群落动态极可能直接影响着植物健康及养分高效利用。虽然根际益生菌已被证实可用于提高作物生产力,但由于缺乏对这些菌群组成动态变化规律的认识了解,它们的开发受到限制。研究马铃薯全生育期根际菌群的动态变化规律,探讨根际菌群变化与马铃薯发育时期的相关性,为针对马铃薯不同生长时期开发专用生物益生菌肥奠定理论基础。[方法]本研究着眼于马铃薯田间全生命周期微生物组动态变化,通过Illumina MiSeq高通量测序技术对不同时间点马铃薯根际细菌16SrRNA基因V3-V4区和真菌ITS区测序并对操作分类单位(OTU)进行聚类,分析样品间微生物群落的多样性特征,并通过机器学习的方法建立模型,将根际菌群与田间马铃薯发育时间相关联。[结果]根际菌群在马铃薯各个发育阶段随时间变化明显,营养生长阶段的微生物群落结构发生了显著变化,随着结薯期的开始逐渐稳定,直到块茎成熟后期根际菌群再次出现较大变化,且在不同施肥处理间呈现较大差异。进一步基于模型挖掘了与马铃薯发育时间相关联的22个特征细菌类群和16个特征真菌类群,其中苗期和结薯末期的特征类群分别为梭菌(Clostridium)和放线菌(Actinobacteria)。[结论]马铃薯的生长发育时期是影响根际微生物群落组成的主要因素,益生菌肥的添加主要影响马铃薯结薯末期的细菌微生物菌群结构。

    Abstract:

    [Objective] The rhizosphere environment of terrestrial plants is closely related to the microbe in the soil. Accumulating evidences indicate that dynamics of rhizosphere microbial community directly affect plant health and nutrients utilization. Although rhizosphere microbes are useful for increasing crop productivity, their development has been limited due to a lack of understanding of the dynamics of microbiome. The dynamic changes of rhizosphere microbiome in the whole growth period of potato were studied, and the correlation between rhizosphere biomarkers and potato developmental stage was discussed here. This study will lay foundation for the development of special bio-probiotic fertilizer for different developmental stages of potatoes.[Methods] This study focused on the microbial dynamics of the whole life cycle of potato in field. The Illumina MiSeq high-throughput sequencing technology was used to sequence the 16S rRNA gene V3-V4 region and the fungal ITS region of potato rhizosphere microbe at different time points and to classify the OTUs, in order to analyze the diversity characteristics of microbial communities between samples, and we also established a model through machine learning to correlate rhizosphere microbes with potato development stages in the field. [Results] The rhizosphere microbiome changed significantly with developmental stages. The microbial community structure in the vegetative growth stage changed significantly and it gradually stabilized at beginning of the reproductive stage, and the rhizosphere microbiome varied a lot in the late stage of tuber maturity. In addition, 22 bacterial biomarkers and 16 fungal biomarkers associated with potato development stages were identified based on the model, which are the biomarker Clostridium in seedling stage and Actinobacteria in tuber matured stage. [Conclusion] The growth and development period of potato is the main factor affecting the composition of rhizosphere microbial community. The addition of probiotic fertilizer has a certain effect on maintaining and stabilizing the rhizosphere bacterial community in the late development stage.

    参考文献
    [1] Müller DB, Vogel C, Bai Y, Vorholt JA. The plant microbiota:systems-level insights and perspectives. Annual Review of Genetics, 2016, 50:211-234.
    [2] Massart S, Martinez-Medina M, Jijakli MH. Biological control in the microbiome era:challenges and opportunities. Biological Control, 2015, 89:98-108.
    [3] Wu XQ, Zhou FY, Zhang XJ. Enlightenment from microbiome research towards biocontrol of plant disease. Acta Microbiologica Sinica, 2017, 57(6):867-875. (in Chinese) 吴晓青, 周方园, 张新建. 微生物组学对植物病害微生物防治研究的启示. 微生物学报, 2017, 57(6):867-875.
    [4] Bulgarelli D, Rott M, Schlaeppi K, ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012, 488(7409):91-95.
    [5] Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8):E911-E920.
    [6] Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16):6548-6553.
    [7] Zhang JY, Zhang N, Liu YX, Zhang XN, Hu B, Qin Y, Xu HR, Wang H, Guo XX, Qian JM, Wang W, Zhang PF, Jin T, Chu CC, Bai Y. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China Life Sciences, 2018, 61(6):613-621.
    [8] Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, Botha FC, Anderson IC, Singh BK. Field study reveals core plant microbiota and relative importance of their drivers. Environmental Microbiology, 2018, 20(1):124-140.
    [9] Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 2013, 64:807-838.
    [10] Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K. Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One, 2014, 9(6):e100709.
    [11] Shi SJ, Nuccio E, Herman DJ, Rijkers R, Estera K, Li JB, da Rocha UN, He ZL, Pett-Ridge J, Brodie EL, Zhou JZ, Firestone M. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio, 2015, 6(4):e00746-15.
    [12] Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Garrido-Oter R, Wunder J, Coupland G, Schulze-Lefert P. Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. The ISME Journal, 2017, 11(1):43-55.
    [13] Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488(7409):86-90.
    [14] Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. The ISME Journal, 2014, 8(4):790-803.
    [15] He ZG, Wang XJ, Dong H, Lou CR, Niu SW, Yu T. A preliminary study of the application of PGPR fertilizer on the potato. Soils and Fertilizers Sciences in China, 2013, (2):100-103. (in Chinese) 何志刚, 王秀娟, 董环, 娄春荣, 牛世伟, 于涛. PGPR菌肥对马铃薯产量与肥料利用率影响的初步研究. 中国土壤与肥料, 2013, (2):100-103.
    [16] Magoč T, Salzberg SL. FLASH:fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21):2957-2963.
    [17] Bolger AM, Lohse M, Usadel B. Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15):2114-2120.
    [18] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16):2194-2200.
    [19] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5):335-336.
    [20] Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 2013, 10(1):57-59.
    [21] Robinson MD, McCarthy DJ, Smyth GK. edgeR:a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1):139-140.
    [22] Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools. Nucleic Acids Research, 2013, 41(D1):D590-D596.
    [23] Rustgi S, Boex-Fontvieille E, Reinbothe C, Von Wettstein D, Reinbothe S. Serpin1 and WSCP differentially regulate the activity of the cysteine protease RD21 during plant development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9):2212-2217.
    [24] Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16):5261-5267.
    [25] Doni F, Anizan I, Che Radziah CMZ, Ahmed WNW, Ashari A, Suryadi E, Yusoff WMW. Enhanced rice seedling growth by Clostridium and Pseudomonas. Biotechnology, 2014, 13(4):186-189.
    [26] Gamalero E, Glick BR. Mechanisms used by plant growth-promoting bacteria//Maheshwari DK. Bacteria in Agrobiology:Plant Nutrient Management. Berlin, Heidelberg:Springer, 2011:17-46.
    [27] Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI. Microbial producers of plant growth stimulators and their practical use:a review. Applied Biochemistry and Microbiology, 2006, 42(2):117-126.
    [28] Polyanskaya LM, Vedina OT, Lysak LV, Zvyagintsev DG. The growth-promoting effect of Beijerinckia mobilis and Clostridium sp. cultures on some agricultural crops. Microbiology, 2002, 71(1):109-115.
    [29] Doan CH, Davidson PM. Microbiology of potatoes and potato products:a review. Journal of Food Protection, 2000, 63(5):668-683.
    [30] Pérombelon MCM, Gullings-Handley J, Kelman A. Population dynamics of Erwinia carotovora and Pectolytic clostridium spp. in relation to decay of potatoes. Phytopathology, 1979, 69:167-173.
    [31] Chen J, Zhu WB, Guo TW, Tan XL, Wang DS, Ma YY, Xue QH. Colonization of actinomycetes and their effect on microorganisms in rhizosphere soil of potato. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(10):150-158. (in Chinese) 陈杰, 朱渭兵, 郭天文, 谭雪莲, 王东胜, 马云艳, 薛泉宏. 放线菌定殖及其对马铃薯根区土壤微生物的影响. 西北农业学报, 2015, 24(10):150-158.
    [32] Baz M, Lahbabi D, Samri S, Val F, Hamelin G, Madore I, Bouarab K, Beaulieu C, Ennaji MM, Barakate M. Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates. World Journal of Microbiology and Biotechnology, 2012, 28(1):303-311.
    [33] Kopecky J, Samkova Z, Sarikhani E, Kyselková M, Omelka M, Kristufek V, Divis J, Grundmann GG, Moenne-Loccoz Y, Sagova-Mareckova M. The effect of susceptible and resistant potato cultivars on bacterial communities in the tuberosphere of potato in soil suppressive or conducive to common scab disease. bioRxiv, 2018, doi:10.1101/340257.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

颜朗,张义正,清源,方志荣,赖先军. 马铃薯全生育期内根际微生物组变化规律[J]. 微生物学报, 2020, 60(2): 246-260

复制
分享
文章指标
  • 点击次数:991
  • 下载次数: 1634
  • HTML阅读次数: 2076
  • 引用次数: 0
历史
  • 收稿日期:2019-03-28
  • 最后修改日期:2019-07-04
  • 在线发布日期: 2020-02-13
文章二维码