烟草青枯病劳尔氏菌与拮抗菌对根系分泌物的竞争作用
作者:
基金项目:

国家自然科学基金(31860597);贵州省科技计划(黔科合支撑[2018]2345);中国烟草总公司贵州省公司科技项目(201808,201905,201703);贵州省烟草公司毕节市公司项目(毕烟科201752050024101)


Competitive use of plant root exudates by Ralstonia solanacearum causing tobacco bacterial wilt and its antagonistic bacterium LX4
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]研究青枯病病原菌与拮抗菌的营养特性及其对烟草根系分泌物的响应差异,对提高拮抗菌定殖能力、有效生物防控烟草青枯病具有非常重要的意义。[方法]本研究通过筛选与鉴定贵州烟区青枯病病原菌株及拮抗菌株,通过Biolog表型芯片技术分别检测病原菌与拮抗菌的特征性碳、氮源,利用气质联用(GC-MS)检测烟草主栽品种K326根系分泌物的主要物质,在此基础上进行病原菌与拮抗菌对其利用能力、利用强度以及共培养的研究。[结果]经鉴定,分离、筛选到的病原菌株和拮抗菌株分别为青枯劳尔氏菌(Ralstonia solanacearum)和枯草芽孢杆菌(Bacillus subtilis);在含量为0.01μg/mL以上的根系分泌物中,12种物质的含量从高到低排序为:果胶 > 葡萄糖 > 木糖 > 阿拉伯糖 > 半乳糖 > 核糖 > 蔗糖 > 苯甲酸 > 果糖=D-甘露醇 > 棕榈酸 > 富马酸,果胶含量最高且明显高于其他物质;拮抗菌(LX4)对碳源利用能力高于病原菌(Rs)的碳源有阿拉伯糖、木糖和核糖,分别是病原菌利用能力的1.22、1.95和2.17倍;前12 h拮抗菌利用果糖强度高于病原菌,不同碳源共培养24h后LX4对gfp-Rs(绿色荧光蛋白标记后的青枯病病原菌)抑制率为18.34%(阿拉伯糖)、53.23%(木糖)、63.53%(核糖)和52.09%(果糖)。[结论]拮抗菌对烟草根系分泌物的利用不及病原菌,但在特定碳源条件下拮抗菌能够利用根系分泌物中的某些碳源产生某种拮抗物质抑制病原菌,拮抗菌与病原菌之间同时存在利用性竞争和干扰性竞争关系,研究结果为进一步研究烟草青枯病的生物防控提供了新的理论依据。

    Abstract:

    [Objective] It is important to study the nutrition relationship between tobacco bacterial wilt pathogen (Ralstonia solanacearum, Rs) and its antagonistic bacterial isolate LX4. The difference in their use of secreted chemicals from tobacco root plays a crucial role for increasing the colonization of antagonist and efficiently bio-controlling tobacco bacterial wilt. [Methods] Pathogen Rs and the antagonistic strain LX4 from tobacco field soil were isolated and identified. We examined the use of characteristic carbon and nitrogen sources in tobacco root exudates by Rs and LX4. Main chemicals in root exudates were identified with a gas chromatography-mass spectrometer (GC-MS). We compared and analyzed the capacity and intensity of utilizing the major nutrients by Rs and strain LX4 by co-culturing the two microorganisms. [Results] The isolated pathogen was identified as R. solanacearum and isolate LX4 was identified as Bacillus subtilis via phylogenetic tree analysis based on their 16S rDNA sequences. In the exudates of tobacco roots, the substances with contents of > 0.01 μg/mL were ordered descendingly as pectin > glucose > xylose > arabinose > galactose > ribose > sucrose > benzoic acid > fructose=D-mannitol > cetylic acid > fumaric acid. The content of pectin was the highest and significantly higher than all the other substances. Strain LX4 could use arabinose, xylose and ribose significantly better than R. solanacearum. The usage capacity of the former was 1.22, 1.95 and 2.17 times of those of the latter, respectively. Besides, the fructose usage by LX4 was higher than that by R. solanacearum in the first 12 h. After 24 h of co-culturing them on different substrates of carbon sources, the suppression rates of strain LX4 to R. solanacearum marked by green fluorescent protein were 18.34% (arabinose), 53.23% (xylose), 63.53% (ribose) and 52.09% (fructose). [Conclusion] In conclusion, the capacity of root exudates from LX4 was lower than that from Rs, which suggested the antagonist had disadvantage in its nutrition competition with the pathogen. However, the antagonist took the advantage of certain carbon substances secreted from tobacco roots to produce antagonistic substances, which were suppressive or toxic to the pathogen. There were both exploitation and interference competitions between the antagonist and pathogen. These results provide some theoretical evidences for the bio-control of tobacco bacterial wilt caused by R. solanacearum in the near future.

    参考文献
    [1] Huo QJ, Zhang S, Wang RY. Advance and control of tobacco bacterial wilt disease. Chinese Agricultural Science Bulletin, 2007, 23(8):364-368. (in Chinese) 霍沁建, 张深, 王若焱. 烟草青枯病研究进展. 中国农学通报, 2007, 23(8):364-368.
    [2] Mallon CA, Le Roux X, Van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure:unsuccessful bacterial invasions steer the soil microbial community away from the invader's niche. The ISME Journal, 2018, 12(3):728-741.
    [3] Mumford R, Friman VP. Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phage therapy. Evolutionary Applications, 2017, 10(2):161-169.
    [4] Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition:surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 2010, 8(1):15-25.
    [5] Huang X, Xu LL, Huang RS, Huang SS. Research advance in controlling plant diseases by Bacillus subtilis. Biotechnology Bulletin, 2010, (1):24-29. (in Chinese) 黄曦, 许兰兰, 黄荣韶, 黄庶识. 枯草芽孢杆菌在抑制植物病原菌中的研究进展. 生物技术通报, 2010, (1):24-29.
    [6] Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C. Soil health through soil disease suppression:which strategy from descriptors to indicators? Soil Biology and Biochemistry, 2007, 39(1):1-23.
    [7] Yang CL, Dong Y, Friman VP, Jousset A, Wei Z, Xu YC, Shen QR. Carbon resource richness shapes bacterial competitive interactions by alleviating growth-antibiosis trade-off. Functional Ecology, 2019, 33(5):868-875.
    [8] Schlatter DC, Kinkel LL. Do tradeoffs structure antibiotic inhibition, resistance, and resource use among soil-borne Streptomyces? BMC Evolutionary Biology, 2015, 15:186.
    [9] Händel N, Schuurmans JM, Brul S, ter Kuile BH. Compensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2013, 57(8):3752-3762.
    [10] Takeuchi K, Kiefer P, Reimmann C, Keel C, Dubuis C, Rolli J, Vorholt JA, Haas D. Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens. The Journal of Biological Chemistry, 2009, 284(50):34976-34985.
    [11] Darrah PR. Measuring the diffusion coefficients or rhizosphere exudates in soil. II. The diffusion of sorbing compounds. European Journal of Soil Science, 1991, 42(3):421-434.
    [12] Liu YX, Li X, Cai LT, Zhang H, Shi JX. Identification of phenolic acids in tobacco root exudates and their role in the growth of rhizosphere microorganisms. Journal of Plant Nutrition and Fertilizer, 2016, 22(2):418-428. (in Chinese) 刘艳霞, 李想, 蔡刘体, 张恒, 石俊雄. 烟草根系分泌物酚酸类物质的鉴定及其对根际微生物的影响. 植物营养与肥料学报, 2016, 22(2):418-428.
    [13] Bochner BR, Gadzinski P, Panomitros E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Research, 2001, 11(7):1246-1255.
    [14] Bochner B. Innovations:new technologies to assess genotype-phenotype relationships. Nature Reviews Genetics, 2003, 4(4):309-314.
    [15] Bochner B, Gomez V, Ziman M, Yang SH, Brown SD. Phenotype microarray profiling of Zymomonas mobilis ZM4. Applied Biochemistry and Biotechnology, 2010, 161(1/8):116-123.
    [16] Atanasova L, Druzhinina IS. Global nutrient profiling by Phenotype MicroArrays:a tool complementing genomic and proteomic studies in conidial fungi. Journal of Zhejiang University Science B:Biomedicine & Biotechnology, 2010, 11(3):151-168.
    [17] Bender KS, Yen HCB, Hemme CL, Yang ZM, He ZL, He Q, Zhou JZ, Huang KH, Alm EJ, Hazen TC, Arkin AP, Wall JD. Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Applied and Environmental Microbiology, 2007, 73(17):5389-5400.
    [18] Johnson DA, Tetu SG, Phillippy K, Chen J, Ren QH, Paulsen IT. High-throughput phenotypic characterization of Pseudomonas aeruginosa membrane transport genes. PLoS Genetics, 2008, 4(10):e1000211.
    [19] Perkins AE, Nicholson WL. Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. Journal of Bacteriology, 2008, 190(3):807-814.
    [20] Viti C, Decorosi F, Mini A, Tatti E, Giovannetti L. Involvement of the oscA gene in the sulphur starvation response and in Cr(VI) resistance in Pseudomonas corrugata 28. Microbiology, 2009, 155(1):95-105.
    [21] Von Eiff C, McNamara P, Becker K, Bates D, Lei XH, Ziman M, Bochner BR, Peters G, Proctor RA. Phenotype microarray profiling of Staphylococcus aureus menD and hemB mutants with the small-colony-variant phenotype. Journal of Bacteriology, 2006, 188(2):687-693.
    [22] Armitano J, Baraquet C, Michotey V, Méjean V, Jourlin-Castelli C. The chemical-in-μwell:a high-throughput technique for identifying solutes eliciting a chemotactic response in motile bacteria. Research in Microbiology, 2011, 162(9):934-938.
    [23] Decorosi F, Santopolo L, Mora D, Viti C, Giovannetti L. The improvement of a phenotype microarray protocol for the chemical sensitivity analysis of Streptococcus thermophilus. Journal of Microbiological Methods, 2011, 86(2):258-261.
    [24] Line JE, Hiett KL, Guard-Bouldin J, Seal BS. Differential carbon source utilization by Campylobacter jejuni 11168 in response to growth temperature variation. Journal of Microbiological Methods, 2010, 80(2):198-202.
    [25] Stolyar S, He Q, Joachimiak MP, He ZL, Yang ZK, Borglin SE, Joyner DC, Huang K, Alm E, Hazen TC, Zhou JZ, Wall JD, Arkin AP, Stahl DA. Response of Desulfovibrio vulgaris to alkaline stress. Journal of Bacteriology, 2007, 189(24):8944-8952.
    [26] Borglin S, Joyner D, DeAngelis KM, Khudyakov J, D'haeseleer P, Joachimiak MP, Hazen T. Application of phenotypic microarrays to environmental microbiology. Current Opinion in Biotechnology, 2012, 23(1):41-48.
    [27] Liu YX, Li X, Zou Y, Zhang H, Cai LT, Meng L, Shi JX. Investigation and analysis of microbial information in tobacco-planted soil from different ecological regions in the Guizhou Province. Acta Ecologica Sinica, 2018, 38(9):3145-3454. (in Chinese) 刘艳霞, 李想, 邹焱, 张恒, 蔡刘体, 孟琳, 石俊雄. 贵州省典型植烟生态区域根际土壤微生物群落多样性. 生态学报, 2018, 38(9):3145-3154.
    [28] Engelbrecht MC. Modification of a semi-selective medium for the isolation and quantification of Pseudomonas solanacearum. Bacterial Wilt Newsletter, 1994, (10):3-5.
    [29] Liu YX, Shi JX, Feng YG, Yang XM, Li X, Shen QR. Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biology and Fertility of Soils, 2013, 49(4):447-464.
    [30] Zhang H, Yu ZL, Huang Q, Xiao X, Wang X, Zhang FY, Wang XQ, Liu YD, Hu CX. Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa. Limnologica, 2011, 41(1):70-77.
    [31] Ji PW, Wilson M. Assessment of the importance of similarity in carbon source utilization profiles between the biological control agent and the pathogen in biological control of bacterial speck of tomato. Applied and Environmental Microbiology, 2002, 68(9):4383-4389.
    [32] Li X, Liu Y, Cai L, Zhang H, Shi J, Yuan Y. Factors affecting the virulence of Ralstonia solanacearum and its colonization on tobacco roots. Plant Pathology, 2017, 66(8):1345-1356.
    [33] Zhang AJ, Hao JA, Yang B, Zhang XQ, Jiang TX, Du J, Zhang YS. Isolation and identification of petroleum degrading marine bacteria and its activity. Chemical Industry and Engineering, 2015, 32(1):31-36. (in Chinese) 张爱君, 郝建安, 杨波, 张晓青, 姜天翔, 杜瑾, 张雨山. 海洋石油降解菌的筛选、鉴定及降解活性. 化学工业与工程, 2015, 32(1):31-36.
    [34] Zhang ZM, Xu YL, Han XZ, Li XH. Effects of continuous fertilization on microbial functional diversity in black soil under cropland. Chinese Journal of Ecology, 2012, 31(3):647-651. (in Chinese) 张志明, 许艳丽, 韩晓增, 李晓慧. 连续施肥对农田黑土微生物功能多样性的影响. 生态学杂志, 2012, 31(3):647-651.
    [35] Gao XX, Yu HY, Zhang JG, Liu SS, Shi P, Wang JS, Shen GM. Identification of chemical compositions of root exudates from flue-cured tobacco and their influence to seed germination. Chinese Tobacco Science, 2012, 33(3):87-91. (in Chinese) 高欣欣, 于会泳, 张继光, 刘帅帅, 时鹏, 王树键, 申国明. 烤烟根系分泌物的分离鉴定及对种子萌发的影响. 中国烟草科学, 2012, 33(3):87-91.
    [36] 邱文龙, 不同品种烟草根系分泌物的组分分析与抗黑胫病的关系. 山东农业大学硕士学位论文, 2014.
    [37] Yu HY, Shen GM, Gao XX. Determination of tobacco root exudates by GC-MS. Acta Tabacaria Sinica, 2013, 19(4):64-72. (in Chinese) 于会泳, 申国明, 高欣欣. 烟草根系分泌物的GC-MS检测. 中国烟草学报, 2013, 19(4):64-72.
    [38] Hao WY, Shen QR, Ran W, Xu YC, Ren LX. The effects of sugars and amino acids in watermelon and rice root exudates on the growth of Fusarium oxysporum f. sp. niveum. Journal of Nanjing Agricultural University, 2011, 34(3):77-82. (in Chinese) 郝文雅, 沈其荣, 冉炜, 徐阳春, 任丽轩. 西瓜和水稻根系分泌物中糖和氨基酸对西瓜枯萎病病原菌生长的影响. 南京农业大学学报, 2011, 34(3):77-82.
    [39] Buyer JS, Teasdale JR, Roberts DP, Zasada IA, Maul JE. Factors affecting soil microbial community structure in tomato cropping systems. Soil Biology and Biochemistry, 2010, 42(5):831-841.
    [40] Baetz U, Martinoia E. Root exudates:the hidden part of plant defense. Trends in Plant Science, 2014, 19(2):90-98.
    [41] Liu YX, Li X, Cai K, Cai LT, Lu N, Shi JX. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms. Applied Soil Ecology, 2015, 93:78-87.
    [42] Badri DV, Weir TL, van der Lelie D, Vivanco JM. Rhizosphere chemical dialogues:plant-microbe interactions. Current Opinion in Biotechnology, 2009, 20(6):642-650.
    [43] Garbeva P, Silby MW, Raaijmakers JM, Levy SB, De Boer W. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. The ISME Journal, 2011, 5(6):973-985.
    [44] Yao J, Allen C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. Journal of Bacteriology, 2006, 188(10):3697-3708.
    [45] Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiology Ecology, 2012, 79(1):176-191.
    引证文献
引用本文

刘艳霞,沈宏,李想,张恒,邹焱,朱经伟,向阳. 烟草青枯病劳尔氏菌与拮抗菌对根系分泌物的竞争作用[J]. 微生物学报, 2020, 60(2): 333-348

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-04-10
  • 最后修改日期:2019-08-01
  • 在线发布日期: 2020-02-13
文章二维码