单增李斯特菌溶血素O的PEST序列激活ERK1/2磷酸化的作用
作者:
基金项目:

国家自然科学基金(31872620,31770040);浙江省自然科学基金(LY17C180001,LZ19C180001,LQ19C180002);国家级大学生创新创业训练计划(201810341024);浙江省大学生科技创新活动计划基金(2018R412037)


Roles of the PEST-like sequence of Listeriolysin O from Listeria monocytogenes in activating ERK1/2 phosphorylation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]本研究旨在构建单核细胞增多性李斯特菌(Listeria monocytogenes,简称单增李斯特菌)溶血素O (Listeriolysin O,LLO)的关键结构域PEST序列(包含S44、S48和T51关键磷酸化位点)突变体,并针对其生物学功能展开研究。[方法]以李斯特菌参考菌株EGD-e为模板扩增编码LLO的hly基因,克隆至pET30a(+)原核表达载体,在此基础上利用氨基酸突变技术获得表达PEST突变体(LLOΔPEST、LLOS44A、LLOS48A和LLOT51A)的重组质粒,转入E.coli Rosetta感受态细胞中,诱导表达重组蛋白经镍离子亲和层析纯化后进行SDS-PAGE分析。利用红细胞裂解试验检测重组蛋白的溶血活性,并通过Western blotting检测重组突变蛋白刺激Caco-2细胞后对MAPK关键信号分子ERK1/2磷酸化水平变化的影响。[结果]结果显示,本研究成功获得重组LLO及其突变体蛋白LLOΔPEST、LLOS44A、LLOS48A和LLOT51A。在pH5.5和7.4条件下,LLOΔPEST、LLOS44A、LLOS48A和LLOT51A均具有和LLO相当的溶血活性,说明PEST序列缺失或突变并不影响LLO的膜裂解活性。研究进一步发现,重组LLO及其突变蛋白刺激Caco-2细胞后均能激活ERK1/2的磷酸化。[结论]研究表明LLO的关键结构域PEST序列对于维持该蛋白的膜裂解能力及穿孔活性并非必需,且该结构域的缺失不影响李斯特菌在感染宿主时依赖LLO介导ERK1/2磷酸化的生物学过程。本研究将为进一步探索细菌感染过程中PEST序列对于LLO发挥生物学功能的潜在作用及分子机制奠定基础。

    Abstract:

    [Objective] The determinant virulence factor Listeriolysin O (LLO) of Listeria monocytogenes, a foodborne pathogen, contains a unique N-terminal amino acid sequence that is absent in other cytolysins and was previously referred as the PEST-like sequence (containing three putative phosphorylation sites, S44, S48, and T51). We here, therefore, aimed to explore the biological roles of the PEST-like sequence in LLO-induced ERK1/2 kinases phosphorylation in human epithelial cells (Caco-2). [Methods] The plasmid for expressing the recombinant LLO was constructed and transformed into E. coli Rosetta, and the his-tagged soluble protein was purified using the nickel-chelated affinity column chromatography. The LLO variants (LLOΔPEST, LLOS44A, LLOS48A, and LLOT51A) were then obtained by using the site-directed mutagenesis strategy and expressed as above for LLO. The hemolytic activity for these recombinant proteins was assessed by lysis the erythrocytes, and moreover, effects of LLO or its variants on ERK1/2 kinases phosphorylation in Caco-2 cells was detected by using the Western blotting method. [Results] The results in the present study showed that the recombinant LLO, as well as the four LLO variants were able to lysis the erythrocytes at pH 5.5 and pH 7.4, suggesting that the PEST-like sequence was not required for the pore-forming activity of LLO. Besides, treatment of the LLO or its variants at the cytolytic concentration of 5 nmol/L could significantly induce ERK1/2 kinases phosphorylation in Caco-2 cells. [Conclusion] Our data collectively showed that the PEST-like sequence was not necessary for the LLO-mediated perforation ability on host membranes and not required for the LLO-triggered ERK1/2 signaling, which laid the foundation for further exploration of the potential roles of this motif during L. monocytogenes infection.

    参考文献
    [1] Mitchell G, Chen C, Portnoy DA. Strategies used by bacteria to grow in macrophages. Microbiology Spectrum, 2016, 4(3), doi:10.1128/microbiolspec.MCHD-0012-2015.
    [2] Radoshevich L, Cossart P. Listeria monocytogenes:towards a complete picture of its physiology and pathogenesis. Nature Reviews Microbiology, 2018, 16(1):32-46.
    [3] Vdovikova S, Luhr M, Szalai P, Nygård Skalman L, Francis MK, Lundmark R, Engedal N, Johansson J, Wai SN. A novel role of Listeria monocytogenes membrane vesicles in inhibition of autophagy and cell death. Frontiers in Cellular and Infection Microbiology, 2017, 7:154.
    [4] Kortebi M, Milohanic E, Mitchell G, Péchoux C, Prevost MC, Cossart P, Bierne H. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells. PLoS Pathogens, 2017, 13(11):e1006734.
    [5] Studer P, Staubli T, Wieser N, Wolf P, Schuppler M, Loessner MJ. Proliferation of Listeria monocytogenes L-form cells by formation of internal and external vesicles. Nature Communications, 2016, 7:13631.
    [6] Osborne SE, Sit B, Shaker A, Currie E, Tan JMJ, van Rijn J, Higgins DE, Brumell JH. Type I interferon promotes cell-to-cell spread of Listeria monocytogenes. Cellular Microbiology, 2017, 19(3):e12660.
    [7] Chen GY, Mcdougal CE, D'Antonio MA, Portman JL, Sauer JD. A genetic screen reveals that synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), but not full-length menaquinone, is required for Listeria monocytogenes cytosolic survival. mBio, 2017, 8(2):e00119-17.
    [8] Quereda JJ, Dussurget O, Nahori MA, Ghozlane A, Volant S, Dillies MA, Regnault B, Kennedy S, Mondot S, Villoing B, Cossart P, Pizarro-Cerda J. Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(20):5706-5711.
    [9] Nguyen BN, Peterson BN, Portnoy DA. Listeriolysin O:a phagosome-specific cytolysin revisited. Cellular Microbiology, 2019, 21(3):e12988.
    [10] Cheng CY, Jiang L, Ma TT, Wang H, Han X, Sun J, Yang YC, Chen ZW, Yu HF, Hang Y, Liu FD, Wang BS, Fang WH, Huang HR, Fang C, Cai C, Freitag N, Song HH. Carboxyl-terminal residues N478 and V479 required for the cytolytic activity of listeriolysin O play a critical role in Listeria monocytogenes pathogenicity. Frontiers in Immunology, 2017, 8:1439.
    [11] Vadia S, Arnett E, Haghighat AC, Wilson-Kubalek EM, Tweten RK, Seveau S. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes. PLoS Pathogens, 2011, 7(11):e1002356.
    [12] Osborne SE, Brumell JH. Listeriolysin O:from bazooka to Swiss army knife. Philosophical Transactions of the Royal Society B:Biological Sciences, 2017, 372(1726):20160222, doi:10.1098/rstb.2016.0222.
    [13] Seveau S. Multifaceted activity of listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes//Anderluh G, Gilbert R. MACPF/CDC Proteins-Agents of Defence, Attack and Invasion. Dordrecht:Springer, 2014:161-195.
    [14] Cassidy SKB, O'Riordan MXD. More than a pore:the cellular response to cholesterol-dependent cytolysins. Toxins, 2013, 5(4):618-636.
    [15] Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9):4341-4346.
    [16] Bavdek A, Kostanjšek R, Antonini V, Lakey JH, Dalla Serra M, Gilbert RJC, Anderluh G. pH dependence of listeriolysin O aggregation and pore-forming ability. The FEBS Journal, 2012, 279(1):126-141.
    [17] Schuerch DW, Wilson-Kubalek EM, Tweten RK. Molecular basis of listeriolysin O pH dependence. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(35):12537-12542.
    [18] Lam JGT, Vadia S, Pathak-Sharma S, McLaughlin E, Zhang XL, Swanson J, Seveau S. Host cell perforation by listeriolysin O (LLO) activates a Ca2+-dependent cPKC/Rac1/Arp2/3 signaling pathway that promotes Listeria monocytogenes internalization independently of membrane resealing. Molecular Biology of the Cell, 2018, 29(3):270-284.
    [19] Weiglein I, Goebel W, Troppmair J, Rapp UR, Demuth A, Kuhn M. Listeria monocytogenes infection of HeLa cells results in listeriolysin O-mediated transient activation of the Raf-MEK-MAP kinase pathway. FEMS Microbiology Letters, 1997, 148(2):189-195.
    [20] Hashino M, Tachibana M, Nishida T, Hara H, Tsuchiya K, Mitsuyama M, Watanabe K, Shimizu T, Watarai M. Inactivation of the MAPK signaling pathway by Listeria monocytogenes infection promotes trophoblast giant cell death. Frontiers in Microbiology, 2015, 6:1145.
    [21] Hamon MA, Batsché E, Régnault B, Tham TN, Seveau S, Muchardt C, Cossart P. Histone modifications induced by a family of bacterial toxins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(33):13467-13472.
    [22] Decatur AL, Portnoy DA. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science, 2000, 290(5493):992-995.
    [23] Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends in Biochemical Sciences, 1996, 21(7):267-271.
    [24] Lety MA, Frehel C, Dubail I, Beretti JL, Kayal S, Berche P, Charbit A. Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in Listeria monocytogenes. Molecular Microbiology, 2001, 39(5):1124-1139.
    [25] Suryawanshi RD, Malik SVS, Jayarao B, Chaudhari SP, Savage E, Vergis J, Kurkure NV, Barbuddhe SB, Rawool DB. Comparative diagnostic efficacy of recombinant LLO and PI-PLC-based ELISAs for detection of listeriosis in animals. Journal of Microbiological Methods, 2017, 137:40-45.
    [26] Pizarro-Cerdá J, Charbit A, Enninga J, Lafont F, Cossart P. Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia. Seminars in Cell & Developmental Biology, 2016, 60:155-167.
    [27] Schnupf P, Zhou JM, Varshavsky A, Portnoy DA. Listeriolysin O secreted by Listeria monocytogenes into the host cell cytosol is degraded by the N-end rule pathway. Infection and Immunity, 2007, 75(11):5135-5147.
    [28] Lety MA, Frehel C, Berche P, Charbit A. Critical role of the N-terminal residues of listeriolysin O in phagosomal escape and virulence of Listeria monocytogenes. Molecular Microbiology, 2002, 46(2):367-379.
    [29] Chen C, Nguyen BN, Mitchell G, Margolis SR, Ma D, Portnoy DA. The listeriolysin O PEST-like sequence co-opts AP-2-mediated endocytosis to prevent plasma membrane damage during Listeria infection. Cell Host & Microbe, 2018, 23(6):786-795.e5.
    [30] Smith SM, Baker M, Halebian M, Smith CJ. Weak molecular interactions in clathrin-mediated endocytosis. Frontiers in Molecular Biosciences, 2017, 4:72.
    [31] Witter AR, Okunnu BM, Berg RE. The essential role of neutrophils during infection with the intracellular bacterial pathogen Listeria monocytogenes. The Journal of Immunology, 2016, 197(5):1557-1565.
    [32] Chen RQ, Ji GQ, Wang L, Ren H, Xi LY. Activation of ERK1/2 and TNF-α production are regulated by calcium/calmodulin signaling pathway during Penicillium marneffei infection within human macrophages. Microbial Pathogenesis, 2016, 93:95-99.
    [33] Vadia S, Seveau S. Fluxes of Ca2+ and K+ are required for the listeriolysin O-dependent internalization pathway of Listeria monocytogenes. Infection and Immunity, 2014, 82(3):1084-1091.
    [34] Schnupf P, Portnoy DA, Decatur AL. Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells:role of the PEST-like sequence. Cellular Microbiology, 2006, 8(2):353-364.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马天天,杭奕,陶旗,俞晓蓉,祝艺然,宋厚辉,程昌勇. 单增李斯特菌溶血素O的PEST序列激活ERK1/2磷酸化的作用[J]. 微生物学报, 2020, 60(2): 349-358

复制
分享
文章指标
  • 点击次数:816
  • 下载次数: 1611
  • HTML阅读次数: 1244
  • 引用次数: 0
历史
  • 收稿日期:2018-04-11
  • 最后修改日期:2018-07-07
  • 在线发布日期: 2020-02-13
文章二维码