Abstract:[Objective] A new jujube disease has emerged in Aksu and other areas in Xinjiang since 2016, seriously threatening the local and surrounding jujube industries during the last three years. This study aims to identify the causative pathogen(s) and to investigate the pathogen transmission route(s), therefore providing guides for the disease control strategies. [Methods] Small RNA sequencing was performed to identify potential pathogen(s), which revealed a new jujube virus. RNAseq and reverse transcription PCR (RT-PCR) were performed to obtain the whole genomic sequence of the identified virus. A viral protein was in-vitro expressed for antibody preparation. Western blotting with the viral specific antibody confirmed the specific existence of the viral protein in infected plants. Insects were collected in the disease-occurred areas and RT-PCR was performed to identify potential virus-transmission vector(s).[Results] This study identified a new virus, belonging to Emaravirus and named as Chinese date mosaic-associated virus (CDMaV) in this study, as a correlated causative regent for Xinjiang jujube disease. We obtained the whole genomic sequence of this viral strain. The CDMaV genome is segmented and consists of five segments of linear negative-sense and single-stranded RNA. The complete genome is 13.078 kb, with RNA1-RNA5 containing 7160 nt, 2224 nt, 1230 nt, 1493 nt, and 971 nt, respectively. The complementary strand of each genomic RNA encodes a single open reading frame, sequentially the five encoded proteins are RNA-dependent RNA polymerase, envelope glycoprotein, nucleocapsid protein, and two unknown functional proteins. The virus specific sequences could be amplified from Epitrimerus zizyphagus, indicated that CDMaV might be transmitted from infected jujube trees to the healthy plants via this insect vector. [Conclusion] This study identified CDMaV as the correlated causative agent for the newly emerged jujube disease in Xinjiang, sequenced the viral genome and identified E. zizyphagus as a potential insect vector for viral transmission. Identification of pathogen and its transmission route would efficiently guide the development of disease control strategies.