L-鸟氨酸发酵菌种的代谢工程研究进展
作者:
基金项目:

江西农业大学博士科研启动基金;国家自然科学基金(31660019)


Advances in metabolic engineering of L-ornithine producing strains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    L-鸟氨酸是一种非蛋白类氨基酸参与尿素代谢及生物多胺类的合成,其对人体具有治疗肝脏疾病、增强免疫力等作用,被广泛应用于医疗、保健、食品等领域。工业上生产鸟氨酸主要有化学法、酶法及工业发酵法。其中,发酵法因其生产成本及环境保护等方面的优势而逐渐成为研究的焦点。本文归纳了近年来采用基因工程技术选育鸟氨酸高产菌种最新研究进展,重点讨论了产鸟氨酸谷氨酸棒杆菌的代谢工程改造策略,并对未来的研究方向进行了预测。

    Abstract:

    L-ornithine is a non-protein amino acid involved in urea metabolism and polyamines biosynthesis. Due to the positive functions in treating liver diseases and enhancing immunity, L-ornithine is widely used in medicine and food industry. Currently, L-ornithine production mainly depends on chemosynthesis, enzymatic catalysis and microbial fermentation. Among them, microbial fermentation has gradually become the focus for L-ornithine production owing to its superiority in cost and environmental protection. In this article, recent progress in the development of high L-ornithine producing strains through genetic engineering is summarized, the metabolic engineering strategies for improving L-ornithine production in Corynebacterium glutamicum are discussed, and the future direction is predicted.

    参考文献
    [1] Goh ET, Stokes CS, Sidhu SS, Vilstrup H, Gluud LL, Morgan MY. L-ornithine L-aspartate for prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database of Systematic Reviews, 2018, 5:CD012410.
    [2] Rathi S, Taneja S. Terminating and episode of overt hepatic encephalopathy:L-ornithine-L-aspartate may have some role. Hepatology, 2018, 67(2):797.
    [3] Becker J, Wittmann C. Advanced biotechnology:metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angewandte Chemie-International Edition, 2015, 54(11):3328-3350.
    [4] D'Este M, Alvarado-Morales M, Angelidaki I. Amino acids production focusing on fermentation technologies-A review. Biotechnology Advances, 2018, 36(1):14-25.
    [5] Jeandet P, Sobarzo-Sánchez E, Clément C, Nabavi SF, Habtemariam S, Nabavi SM, Cordelier S. Engineering stilbene metabolic pathways in microbial cells. Biotechnology Advances, 2018, 36(8):2264-2283.
    [6] Zhang B, Gao G, Chu XH, Ye BC. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of L-ornithine driven by glucose and xylose. Bioresource Technology, 2019, 284:204-213.
    [7] Zhang B, Yu M, Wei WP, Ye BC. Optimization of L-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and manipulating the central metabolic pathway. Microbial Cell Factories, 2018, 17:91.
    [8] Zhang B, Yu M, Zhou Y, Li Y, Ye BC. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L-ornithine production. Microbial Cell Factories, 2017, 16:158.
    [9] Kogure T, Inui M. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Applied Microbiology and Biotechnology, 2018, 102(20):8685-8705.
    [10] Kim HT, Khang TU, Baritugo KA, Hyun SM, Kang KH, Jung SH, Song BK, Park K, Oh MK, Kim GB, Kim HU, Lee SY, Park SJ, Joo JC. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metabolic Engineering, 2019, 51:99-109.
    [11] Becker J, Rohles CM, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metabolic Engineering, 2018, 50:122-141.
    [12] Kim DJ, Hwang GH, Um JN, Cho JY. Increased L-ornithine production in Corynebacterium glutamicum by overexpression of a gene encoding a putative aminotransferase. Journal of Molecular Microbiology and Biotechnology, 2015, 25(1):45-50.
    [13] Kim SY, Lee J, Lee SY. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnology and Bioengineering, 2015, 112(2):416-421.
    [14] Jensen JV, Eberhardt D, Wendisch VF. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. Journal of Biotechnology, 2015, 214:85-94.
    [15] Hwang GH, Cho JY. Enhancement of L-ornithine production by disruption of three genes encoding putative oxidoreductases in Corynebacterium glutamicum. Journal of Industrial Microbiology & Biotechnology, 2014, 41(3):573-578.
    [16] Jiang LY, Chen SG, Zhang YY, Liu JZ. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnology, 2013, 13:47.
    [17] Jiang LY, Zhang YY, Li Z, Liu JZ. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. Journal of Industrial Microbiology & Biotechnology, 2013, 40(10):1143-1151.
    [18] Hao N, Mu JR, Hu N, Xu S, Shen P, Yan M, Li Y, Xu L. Implication of ornithine acetyltransferase activity on L-ornithine production in Corynebacterium glutamicum. Biotechnology and Applied Biochemistry, 2016, 63(1):15-21.
    [19] Zhang B, Yu M, Zhou Y, Ye BC. Improvement of L-ornithine production by attenuation of argF in engineered Corynebacterium glutamicum S9114. AMB Express, 2018, 8:26.
    [20] Zhang B, Ren LQ, Yu M, Zhou Y, Ye BC. Enhanced L-ornithine production by systematic manipulation of L-ornithine metabolism in engineered Corynebacterium glutamicum S9114. Bioresource Technology, 2018, 250:60-68.
    [21] Xu JZ, Yang HK, Zhang WG. NADPH metabolism:a survey of its theoretical characteristics and manipulation strategies in amino acid biosynthesis. Critical Reviews in Biotechnology, 2018, 38(7):1061-1076.
    [22] Wang ZH, Chan SHJ, Sudarsan S, Blank LM, Jensen PR, Solem C. Elucidation of the regulatory role of the fructose operon reveals a novel target for enhancing the NADPH supply in Corynebacterium glutamicum. Metabolic Engineering, 2016, 38:344-357.
    [23] Bommareddy RR, Chen Z, Rappert S, Zeng AP. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metabolic Engineering, 2014, 25:30-37.
    [24] Xu JZ, Ruan HZ, Chen XL, Zhang F, Zhang WG. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping. Microbial Cell Factories, 2019, 18:65.
    [25] Wu WJ, Zhang Y, Liu DH, Chen Z. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum. Metabolic Engineering, 2019, 52:77-86.
    [26] Zhan ML, Kan BJ, Dong JJ, Xu GC, Han RZ, Ni Y. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. Journal of Industrial Microbiology & Biotechnology, 2019, 46(1):45-54.
    [27] Hentschel E, Will C, Mustafi N, Burkovski A, Rehm N, Frunzke J. Destabilized eYFP variants for dynamic gene expression studies in Corynebacterium glutamicum. Microbial Biotechnology, 2013, 6(2):196-201.
    [28] Wang Y, Cao GQ, Xu DY, Fan LW, Wu XY, Ni XM, Zhao SX, Zheng P, Sun JB, Ma YH. A novel Corynebacterium glutamicum L-glutamate exporter. Applied and Environmental Microbiology, 2018, 84(6):e02691-17.
    [29] Dong XY, Zhao Y, Hu JY, Li Y, Wang XY. Attenuating L-lysine production by deletion of ddh and lysE and their effect on L-threonine and L-isoleucine production in Corynebacterium glutamicum. Enzyme and Microbial Technology, 2016, 93-94:70-78.
    [30] Lubitz D, Jorge JMP, Pérez-García F, Taniguchi H, Wendisch VF. Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2016, 100(19):8465-8474.
    [31] Xu MJ, Rao ZM, Yang J, Dou WF, Xu ZH. The effect of a LYSE exporter overexpression on L-arginine production in Corynebacterium crenatum. Current Microbiology, 2013, 67(3):271-278.
    [32] Bellmann A, Vrljic M, Pátek M, Sahm H, Krämer R, Eggeling L. Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology, 2001, 147(7):1765-1774.
    [33] Man ZW, Rao ZM, Xu MJ, Guo J, Yang TW, Zhang X, Xu ZH. Improvement of the intracellular environment for enhancing L-arginine production of Corynebacterium glutamicum by inactivation of H2O2-forming flavin reductases and optimization of ATP supply. Metabolic Engineering, 2016, 38:310-321.
    [34] Guo J, Man ZW, Rao ZM, Xu MJ, Yang TW, Zhang X, Xu ZH. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum. Journal of Industrial Microbiology & Biotechnology, 2017, 44(3):443-451.
    [35] Shu QF, Xu MJ, Li J, Yang TW, Zhang X, Xu ZH, Rao ZM. Improved L-ornithine production in Corynebacterium crenatum by introducing an artificial linear transacetylation pathway. Journal of Industrial Microbiology & Biotechnology, 2018, 45(6):393-404.
    [36] Zhang XM, Xu GQ, Shi JS, Koffas MAG, Xu ZH. Microbial production of L-serine from renewable feedstocks. Trends in Biotechnology, 2018, 36(7):700-712
    [37] Lee YJ, Cho JY. Genetic manipulation of a primary metabolic pathway for L-ornithine production in Escherichia coli. Biotechnology Letters, 2006, 28(22):1849-1856.
    [38] Li SJ, Li YN, Smolke CD. Strategies for microbial synthesis of high-value phytochemicals. Nature Chemistry, 2018, 10(4):395-404.
    [39] Lian JZ, Mishra S, Zhao HM. Recent advances in metabolic engineering of Saccharomyces cerevisiae:New tools and their applications. Metabolic Engineering, 2018, 50:85-108.
    [40] Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao LS, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JW, Jiang HX, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 2016, 537(7622):694-697.
    [41] Qin JF, Zhou YJ, Krivoruchko A, Huang MT, Liu LF, Khoomrung S, Siewers V, Jiang B, Nielsen J. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine. Nature Communications, 2015, 6:8224.
    [42] Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science, 2018, 361(6405):866-869.
    [43] Plateau P, Moch C, Blanquet S. Spermidine strongly increases the fidelity of Escherichia coli CRISPR Cas1-Cas2 integrase. Journal of Biological Chemistry, 2019, 294(29):11311-11322.
    [44] Tao S, Qian Y, Wang X, Cao WJ, Ma WC, Chen KQ, Ouyang PK. Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production. Microbial Cell Factories, 2018, 17:147.
    [45] Radovčić M, Killelea T, Savitskaya E, Wettstein L, Bolt EL, Ivančić-Baće I. CRISPR-Cas adaptation in Escherichia coli requires RecBCD helicase but not nuclease activity, is independent of homologous recombination, and is antagonized by 5' ssDNA exonucleases. Nucleic Acids Research, 2018, 46(19):10173-10183.
    [46] Tarasava K, Oh EJ, Eckert CA, Gill RT. CRISPR-enabled tools for engineering microbial genomes and phenotypes. Biotechnology Journal, 2018, 13(9):e1700586.
    [47] Zhang YP, Wang J, Wang ZB, Zhang YM, Shi SB, Nielsen J, Liu ZH. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nature Communications, 2019, 10:1053.
    [48] Jiang Y, Qian FH, Yang JJ, Liu YM, Dong F, Xu CM, Sun BB, Chen B, Xu XS, Li Y, Wang RX, Yang S. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications, 2017, 8:15179.
    [49] Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, Lee SY. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metabolic Engineering, 2017, 42:157-167.
    [50] Wang Y, Liu Y, Liu J, Guo YM, Fan LW, Ni XM, Zheng XM, Wang M, Zheng P, Sun JB, Ma YH. MACBETH:multiplex automated Corynebacterium glutamicum base editing method. Metabolic Engineering, 2018, 47:200-210.
    [51] Westbrook AW, Ren X, Moo-Young M, Chou CP. Metabolic engineering of Bacillus subtilis for L-valine overproduction. Biotechnology and Bioengineering, 2018, 115(11):2778-2792
    [52] Cleto S, Jensen JV, Wendisch VF, Lu TK. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synthetic Biology, 2016, 5(5):375-385.
    [53] Lim HG, Jang S, Jang S, Seo SW, Jung GY. Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals. Current Opinion in Biotechnology, 2018, 54:18-25.
    [54] Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metabolic Engineering, 2015, 32:184-194.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐心怡,张斌,吴晓玉,江燕,陈雪岚. L-鸟氨酸发酵菌种的代谢工程研究进展[J]. 微生物学报, 2020, 60(3): 421-430

复制
分享
文章指标
  • 点击次数:1400
  • 下载次数: 2016
  • HTML阅读次数: 2938
  • 引用次数: 0
历史
  • 收稿日期:2019-06-02
  • 最后修改日期:2019-08-03
  • 在线发布日期: 2020-03-11
文章二维码