人工微宇宙下粘细菌捕食对微生物群落结构的影响
作者:
基金项目:

国家重点研发项目(2016YFD0200300);中国科学院重大基础专项(KFZD-SW-112)


Effects of myxobacteria predation on microbial community structure of artificial microcosm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 人工微宇宙条件下测试粘细菌捕食对微生物群落结构的影响,模拟粘细菌捕食对微生态系统的调控作用。[方法] 采用Lawn predation法,测定粘细菌EGB对9种猎物菌的捕食直径,以确定其对猎物菌的捕食能力。通过高通量测序技术分析粘细菌捕食引起的微生物群落结构变化。[结果] 粘细菌EGB对9种不同猎物菌的捕食能力差异显著,粘细菌对热带芽孢杆菌的捕食能力显著高于其他细菌(P<0.05)。在含有9种猎物细菌的人工微宇宙系统中添加不等量粘细菌,均可显著降低细菌群落的多样性指数(Shannon)。PCoA结果表明粘细菌捕食可影响微宇宙微生物群落结构。人工微宇宙培养24 h后,7种猎物菌相对丰度显著降低(LefSe,P<0.05),但洋葱伯克霍尔德菌的相对丰度显著升高(P<0.05)。人工微宇宙实验的结果表明,粘细菌添加是造成其微生物群落结构改变的主要影响因素,且添加最小剂量的粘细菌(1 mL)也有显著的影响效果;随着培养时间的增加,洋葱伯克霍尔德菌是唯一能抵抗粘细菌捕食并具有较高丰度的猎物细菌。[结论] 粘细菌捕食能够调控微宇宙中微生物的群落结构,为其对土壤生态的调控研究奠定了理论基础。

    Abstract:

    [Objective] The purpose of this research is to test the effects of myxobacteria predation on the microbial community structure in microcosms and determine the role of myxobacteria predation in the regulation of artificial microecosystem.[Methods] Predation ability was determined by the predation diameters of myxobacteria EGB against nine species of prey bacteria using Lawn predation method. The microbial community structure changes caused by the predation of myxobacteria were analyzed through high-throughput sequencing technology.[Results] The predation abilities of myxobacteria EGB to 9 different species of prey bacteria were significantly different. The predation ability of myxobacteria to Bacillus tropicus was significantly higher than that of other bacteria (P<0.05). Adding different amounts of myxobacteria in an artificial microcosm system containing nine prey bacteria, the bacterial community diversity index (Shannon) was significantly reduced. The results of PCoA showed that the myxobacteria predation could affect the microcosm microbial community structure. The relative abundance of seven species of prey bacteria was reduced significantly (LefSe, P<0.05), while the relative abundance of Burkholderia cenocepacia was increased significantly (P<0.05) after 24-hour of artificial microcosm cultivation. The results of artificial microcosm experiments showed that the addition of myxobacteria EGB was the main factor influencing the microbial community structure, and the addition of the minimum dose of myxobacteria (1 mL) also had a significant effect. With the increase of tested time, Burkholderia was the only prey bacteria that could resist the predation of myxobacteria and kept its relative high abundance.[Conclusion] Myxobacteria predation could regulate the microbial community structure in the microcosm, which lays a theoretical foundation for applying in soil-ecosystem regulation in the future.

    参考文献
    [1] Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. Bacterial predation:75 years and counting! Environmental Microbiology, 2016, 18(3):766-779.
    [2] Reichenbach H. The ecology of the myxobacteria. Environmental Microbiology, 1999, 1(1):15-21.
    [3] Dworkin M. Recent advances in the social and developmental biology of the Myxobacteria. Microbiological Reviews, 1996, 60(1):70-102.
    [4] Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria:moving, killing, feeding, and surviving together. Frontiers in Microbiology, 2016, 7:781.
    [5] Berryman AA. The orgins and evolution of predator-prey theory. Ecology, 1992, 73(5):1530-1535.
    [6] Suttle CA, Chan AM. Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp.. Applied and Environmental Microbiology, 1994, 60(9):3167-3174.
    [7] Rønn R, McCaig AE, Griffiths BS, Prosser JI. Impact of protozoan grazing on bacterial community structure in soil microcosms. Applied and Environmental Microbiology, 2002, 68(12):6094-6105.
    [8] Gonzalez JM, Sherr EB, Sherr BF. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Applied and Environmental Microbiology, 1990, 56(3):583-589.
    [9] Findlay BL. The chemical ecology of predatory soil bacteria. ACS Chemical Biology, 2016, 11(6):1502-1510.
    [10] Keane R, Berleman J. The predatory life cycle of Myxococcus xanthus. Microbiology, 2016, 162(1):1-11.
    [11] De Bruijn I, Cheng X, De Jager V, Expósito RG, Watrous J, Patel N, Postma J, Dorrestein PC, Kobayashi D, Raaijmakers JM. Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics, 2015, 16:991.
    [12] Kiss H, Nett M, Domin N, Martin K, Maresca JA, Copeland A, Lapidus A, Lucas S, Berry KW, Glavina Del Rio T, Dalin E, Tice H, Pitluck S, Richardson P, Bruce D, Goodwin L, Han C, Detter JC, Schmutz J, Brettin T, Land M, Hauser L, Kyrpides NC, Ivanova N, Göker M, Woyke T, Klenk HP, Bryant DA. Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95T). Standards in Genomic Sciences, 2011, 5(3):356-370.
    [13] Lloyd DG, Whitworth DE. The Myxobacterium Myxococcus xanthus can sense and respond to the quorum signals secreted by potential prey organisms. Frontiers in Microbiology, 2017, 8:439.
    [14] Galperin MY. A census of membrane-bound and intracellular signal transduction proteins in bacteria:bacterial IQ, extroverts and introverts. BMC Microbiology, 2005, 5:35.
    [15] Barakat M, Ortet P, Jourlin-Castelli C, Ansaldi M, Méjean V, Whitworth DE. P2CS:a two-component system resource for prokaryotic signal transduction research. BMC Genomics, 2009, 10:315.
    [16] Whitworth DE, Cock PJA. Two-component systems of the myxobacteria:structure, diversity and evolutionary relationships. Microbiology, 2008, 154(2):360-372.
    [17] Jiang DM, Zhou XW, Tian XX, Wu ZH, Li YZ. Phylogenetic analysis of the 16S rRNA and HSP60 gene sequences of the morphology-based taxa of myxobacteria. Acta Microbiologica Sinica, 2008, 48(6):711-716. (in Chinese) 蒋德明, 周秀文, 田晓翔, 吴志红, 李越中. 基于16S rRNA和HSP60基因序列分析粘细菌孢囊杆菌亚目形态分类的种属之间的亲缘关系. 微生物学报, 2008, 48(6):711-716.
    [18] Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiology Reviews, 2000, 24(4):403-427.
    [19] Li ZK, Wu JL, Zhang BY, Wang F, Ye XF, Huang Y, Huang Q, Cui ZL. AmyM, a novel maltohexaose-forming α-amylase from Corallococcus sp. strain EGB. Applied and Environmental Microbiology, 2015, 81(6):1977-1987.
    [20] Li ZK, Ji K, Dong WL, Ye XF, Wu JL, Zhou J, Wang F, Chen QZ, Fu L, Li SH, Huang Y, Cui ZL. Cloning, heterologous expression, and enzymatic characterization of a novel glucoamylase GlucaM from Corallococcus sp. strain EGB. Protein Expression and Purification, 2017, 129:122-127.
    [21] Zhou J, Li ZK, Wu JL, Li YF, Li D, Ye XF, Luo X, Huang Y, Cui ZL, Cao H. Functional analysis of a novel β-(1,3)-glucanase from Corallococcus sp. strain EGB containing a fascin-like module. Applied and Environmental Microbiology, 2017, 83(16):e01016-17.
    [22] Morgan AD, MacLean RC, Hillesland KL, Velicer GJ. Comparative analysis of Myxococcus predation on soil bacteria. Applied and Environmental Microbiology, 2010, 76(20):6920-6927.
    [23] Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Current Protocols in Bioinformatics, 2011, 36(1):10.7.1-10.7.20.
    [24] Yu IS, Yeom SJ, Kim HJ, Lee JK, Kim YH, Oh DK. Substrate specificity of Stenotrophomonas nitritireducens in the hydroxylation of unsaturated fatty acid. Applied Microbiology and Biotechnology, 2008, 78(1):157-163.
    [25] Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science, 2016, 353(6305):1272-1277.
    [26] Whitworth DE. Myxobacteria:multicellularity and differentiation. Washington:ASM Press, 2008:75-76.
    [27] Chen H, Athar R, Zheng GL, Williams HN. Prey bacteria shape the community structure of their predators. The ISME Journal, 2011, 5(8):1314-1322.
    [28] Liu KC, Casida Jr LE. Survival of myxobacter strain 8 in natural soil in the presence and absence of host cells. Soil Biology and Biochemistry, 1983, 15(5):551-555.
    [29] Schmidt S, Blom JF, Pernthaler J, Berg G, Baldwin A, Mahenthiralingam E, Eberl L. Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex. Environmental Microbiology, 2009, 11(6):1422-1437.
    [30] Quan CS, Zheng W, Liu Q, Ohta Y, Fan SD. Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani. Applied Microbiology and Biotechnology, 2006, 72(6):1276-1284.
    [31] Saleem M, Fetzer I, Harms H, Chatzinotas A. Diversity of protists and bacteria determines predation performance and stability. The ISME Journal, 2013, 7(10):1912-1921.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

代威,纠敏,王文辉,崔中利,王辉. 人工微宇宙下粘细菌捕食对微生物群落结构的影响[J]. 微生物学报, 2020, 60(3): 452-463

复制
分享
文章指标
  • 点击次数:1115
  • 下载次数: 1409
  • HTML阅读次数: 2555
  • 引用次数: 0
历史
  • 收稿日期:2019-04-27
  • 最后修改日期:2019-08-17
  • 在线发布日期: 2020-03-11
文章二维码