鸡肠道微生物菌群的建立发育、分布和生理学意义
作者:
基金项目:

科技部援助项目(KY201501005);西北民族大学引进人才科研启动项目(xbmuyjrc 201912);中央高校基本科研业务费项目(31920190022)


Establishment, distribution and physiological significance of the intestinal microbiota in chicken
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [64]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    鸡的胃肠道具有复杂的微生物菌群,该微生物菌群与宿主的肠道和整体健康密切相关,为了全面揭示鸡肠道微生物菌群的组成及其功能,本文对鸡肠道微生物菌群的建立发育、各肠段群落的分布及其生理学意义进行综述,从而为鸡肠道功能菌株的分离及有效利用,合理调控微生物菌群-宿主相互作用,提高饲料转化率和改善肠道健康提供理论依据。

    Abstract:

    The chicken gastrointestinal tract (GIT) harbors a complex microbial community. The intestinal microbiota is closely related to both the intestinal and overall health of the host. In order to get insights into the composition and function of chicken gut microbiota (intestinal microbiome) we provide an overview of the chicken gastrointestinal microbiota by focusing on the establishment and development, spatial distribution in all intestinal compartments and physiological significance. We foresee advances in strategies to isolate and effectively utilize the functional bacteria in chicken intestinal tract and reasonably manage/modulate the intestinal microbe-host interactions to enhance feed efficiency and improve gut health.

    参考文献
    [1] Apajalahti J, Kettunen A, Graham H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poultry Science Journal, 2004, 60(2):223-232.
    [2] Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, Lee MD, Collett SR, Johnson TJ, Cox NA. The chicken gastrointestinal microbiome. FEMS Microbiology Letters, 2014, 360(2):100-112.
    [3] Huang P, Zhang Y, Xiao KP, Jiang F, Wang HC, Tang DZ, Liu D, Liu B, Liu YS, He X, Liu H, Liu XB, Qing ZX, Liu CL, Huang JL, Ren YW, Yun L, Yin LJ, Lin Q, Zeng C, Su XG, Yuan JY, Lin L, Hu NX, Cao HL, Huang SW, Guo YM, Fan W, Zeng JG. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome, 2018, 6(1):211.
    [4] Wienemann T, Schmitt-Wagner D, Meuser K, Segelbacher G, Schink B, Brune A, Berthold P. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Systematic and Applied Microbiology, 2011, 34(7):542-551.
    [5] Stanley D, Hughes RJ, Moore RJ. Microbiota of the chicken gastrointestinal tract:influence on health, productivity and disease. Applied Microbiology and Biotechnology, 2014, 98(10):4301-4310.
    [6] Mead GC. Microbes of the avian cecum:types present and substrates utilized. Part A:Ecological Genetics and Physiology, Journal of Experimental Zoology, 1989, 252(S3):48-54.
    [7] Brisbin JT, Gong J, Sharif S. Interactions between commensal bacteria and the gut-associated immune system of the chicken. Animal Health Research Reviews, 2008, 9(1):101-110.
    [8] Young JC, Zhou T, Yu H, Zhu HH, Gong JH. Degradation of trichothecene mycotoxins by chicken intestinal microbes. Food and Chemical Toxicology, 2007, 45(1):136-143.
    [9] Ruiz-de-Castañeda R, Vela AI, Lobato E, Briones V, Moreno J. Bacterial loads on eggshells of the pied flycatcher:environmental and maternal factors. The Condor, 2011, 113(1):200-208.
    [10] Roto SM, Kwon YM, Ricke SC. Applications of in ovo technique for the optimal development of the gastrointestinal tract and the potential influence on the establishment of its microbiome in poultry. Frontiers in Veterinary Science, 2016, 3:63.
    [11] Barnes EM, Impey CS, Cooper DM. Manipulation of the crop and intestinal flora of the newly hatched chick. The American Journal of Clinical Nutrition, 1980, 33(11):2426-2433.
    [12] Thomas M, Wongkuna S, Ghimire S, Kumar R, Antony L, Doerner KC, Singery A, Nelson E, Woyengo T, Chankhamhaengdecha S, Janvilisri T, Scaria J. Gut microbial dynamics during conventionalization of germfree chicken. mSphere, 2019, 4(2):e00035-19.
    [13] Barnes EM, Mead GC, Barnuml DA, Harry EG. The intestinal flora of the chicken in the period 2 to 6 weeks of age, with particular reference to the anaerobic bacteria. British Poultry Science, 1972, 13(3):311-326.
    [14] van der Wielen PWJJ, Keuzenkamp DA, Lipman LJA, van Knapen F, Biesterveld S. Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microbial Ecology, 2002, 44(3):286-293.
    [15] Lu JR, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology, 2003, 69(11):6816-6824.
    [16] Shang Y, Kumar S, Oakley B, Kim WK. Chicken gut microbiota:importance and detection technology. Frontiers in Veterinary Science, 2018, 5:254.
    [17] Wei S, Morrison M, Yu Z. Bacterial census of poultry intestinal microbiome. Poultry Science, 2013, 92(3):671-683.
    [18] Xiao YP, Xiang Y, Zhou WD, Chen JG, Li KF, Yang H. Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 2017, 96(5):1387-1393.
    [19] Gong JH, Si WD, Forster RJ, Huang RL, Yu H, Yin YL, Yang CB, Han YM. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts:from crops to ceca. FEMS Microbiology Ecology, 2007, 59(1):147-157.
    [20] Guan LL, Hagen KE, Tannock GW, Korver DR, Fasenko GM, Allison GE. Detection and identification of Lactobacillus species in crops of broilers of different ages by using PCR-denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis. Applied and Environmental Microbiology, 2003, 69(11):6750-6757.
    [21] Hinton Jr A, Buhr RJ, Ingram KD. Physical, chemical, and microbiological changes in the crop of broiler chickens subjected to incremental feed withdrawal. Poultry Science, 2000, 79(2):212-218.
    [22] Petr J, Rada V. Bifidobacteria are obligate inhabitants of the crop of adult laying hens. Journal of Veterinary Medicine, Series B, 2001, 48(3):227-233.
    [23] Engberg RM, Hedemann MS, Jensen BB. The influence of grinding and pelleting of feed on the microbial composition and activity in the digestive tract of broiler chickens. British Poultry Science, 2002, 43(4):569-579.
    [24] Salanitro JP, Blake IG, Muirehead PA, Maglio M, Goodman JR. Bacteria isolated from the duodenum, ileum, and cecum of young chicks. Applied and Environmental Microbiology, 1978, 35(4):782-790.
    [25] Bjerrum L, Engberg RM, Leser TD, Jensen BB, Finster K, Pedersen K. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Science, 2006, 85(7):1151-1164.
    [26] Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, Sisak F, Rychlik I. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One, 2014, 9(12):e115142.
    [27] Mead GC, Adams BW. Some observations on the caecal micro-flora of the chick during the first two weeks of life. British Poultry Science, 1975, 16(2):169-176.
    [28] Salanitro JP, Blake IG, Muirhead PA. Studies on the cecal microflora of commercial broiler chickens. Applied Microbiology, 1974, 28(3):439-447.
    [29] Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One, 2014, 9(3):e91941.
    [30] Zhu XY, Zhong TY, Pandya Y, Joerger RD. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology, 2002, 68(1):124-137.
    [31] Saengkerdsub S, Anderson RC, Wilkinson HH, Kim WK, Nisbet DJ, Ricke SC. Identification and quantification of methanogenic archaea in adult chicken ceca. Applied and Environmental Microbiology, 2007, 73(1):353-356.
    [32] Gencay YE, Birk T, Sørensen MCH, Brøndsted L. Methods for isolation, purification, and propagation of bacteriophages of Campylobacter jejuni//Butcher J, Stintzi A. Campylobacter jejuni. New York:Humana Press, 2017:19-28.
    [33] Sekelja M, Rud I, Knutsen SH, Denstadli V, Westereng B, Næs T, Rudi K. Abrupt temporal fluctuations in the chicken fecal microbiota are explained by its gastrointestinal origin. Applied and Environmental Microbiology, 2012, 78(8):2941-2948.
    [34] Stanley D, Geier MS, Chen HL, Hughes RJ, Moore RJ. Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiology, 2015, 15(1):51.
    [35] Pauwels J, Taminiau B, Janssens GPJ, de Beenhouwer M, Delhalle L, Daube G, Coopman F. Cecal drop reflects the chickens' cecal microbiome, fecal drop does not. Journal of Microbiological Methods, 2015, 117:164-170.
    [36] Vispo C, Karasov WH. The interaction of avian gut microbes and their host:an elusive symbiosis//Mackie RI, White BA. Gastrointestinal Microbiology. Boston:Springer, 1997:116-155.
    [37] Stanley D, Geier MS, Denman SE, Haring VR, Crowley TM, Hughes RJ, Moore RJ. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary microbiology, 2013, 164(1/2):85-92.
    [38] Ford DJ, Coates ME. Absorption of glucose and vitamins of the B complex by germ-free and conventional chicks. The Proceedings of the Nutrition Society, 1971, 30(1):10A-11A.
    [39] Józefiak D, Rutkowski A, Martin SA. Carbohydrate fermentation in the avian ceca:a review. Animal Feed Science and Technology, 2004, 113(1/4):1-15.
    [40] Grajal A, Strahl SD, Parra R, Gloria Dominguez M, Neher A. Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science, 1989, 245(4923):1236-1238.
    [41] Matsui H, Kato Y, Chikaraishi T, Moritani M, Ban-Tokuda T, Wakita M. Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe, 2010, 16(2):83-93.
    [42] Bolton W. Digestion in the crop of the fowl. British Poultry Science, 1965, 6(2):97-102.
    [43] Pinchasov Y, Noy Y. Early postnatal amylolysis in the gastrointestinal tract of turkey poults Meleagris gallopavo. Comparative Biochemistry and Physiology Part A:Physiology, 1994, 107(1):221-226.
    [44] Lei F, Yin YS, Wang YZ, Deng B, Yu HD, Li LJ, Xiang C, Wang SY, Zhu BL, Wang X. Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Applied and Environmental Microbiology, 2012, 78(16):5763-5772.
    [45] Preest MR, Folk DG, Beuchat CA. Decomposition of nitrogenous compounds by intestinal bacteria in hummingbirds. The Auk, 2003, 120(4):1091-1101.
    [46] Braun EJ, Campbell CE. Uric acid decomposition in the lower gastrointestinal tract. Journal of Experimental Zoology, 1989, 252(S3):70-74.
    [47] Kimura N, Yoshikane M, Kobayashi A. Microflora of the bursa of Fabricius of chickens. Poultry Science, 1986, 65(9):1801-1807.
    [48] Ekino S, Suginohara K, Urano T, Fujii H, Matsuno K, Kotani M. The bursa of Fabricius:a trapping site for environmental antigens. Immunology, 1985, 55(3):405-410.
    [49] Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001, 291(5505):881-884.
    [50] Deplancke B, Gaskins HR. Microbial modulation of innate defense:goblet cells and the intestinal mucus layer. The American Journal of Clinical Nutrition, 2001, 73(6):1131S-1141S.
    [51] Johansson MEV, Ambort D, Pelaseyed T, Schütte A, Gustafsson JK, Ermund A, Subramani DB, Holmén-Larsson JM, Thomsson KA, Bergström JH, van der Post S, Rodriguez-Piñeiro AM, Sjövall H, Bäckström M, Hansson GC. Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences, 2011, 68(22):3635-3641.
    [52] Byrne CM, Clyne M, Bourke B. Campylobacter jejuni adhere to and invade chicken intestinal epithelial cells in vitro. Microbiology, 2007, 153(2):561-569.
    [53] García-Amado MA, Michelangeli F, Gueneau P, Perez ME, Domínguez-Bello MG. Bacterial detoxification of saponins in the crop of the avian foregut fermenter Opisthocomus hoazin. Journal of Animal and Feed Sciences, 2007, 16(S2):82-85.
    [54] Tilocca B, Witzig M, Rodehutscord M, Seifert J. Variations of phosphorous accessibility causing changes in microbiome functions in the gastrointestinal tract of chickens. PLoS One, 2016, 11(10):e0164735.
    [55] Slominski BA, Campbell LD, Stanger NE. Extent of hydrolysis in the intestinal tract and potential absorption of intact glucosinolates in laying hens. Journal of the Science of Food and Agriculture, 1988, 42(4):305-314.
    [56] Kers JG, Velkers FC, Fischer EAJ, Hermes GDA, Stegeman JA, Smidt H. Host and environmental factors affecting the intestinal microbiota in chickens. Frontiers in Microbiology, 2018, 9:235.
    [57] Zhou XY, Jiang XS, Yang CW, Ma BC, Lei CW, Xu CW, Zhang AY, Yang X, Xiong Q, Zhang P, Men S, Xiang R, Wang HN. Cecal microbiota of Tibetan Chickens from five geographic regions were determined by 16S rRNA sequencing. MicrobiologyOpen, 2016, 5(5):753-762.
    [58] Yang SZ, Gao X, Meng JH, Zhang AY, Zhou YM, Long M, Li B, Deng WW, Jin L, Zhao SY, Wu DF, He YG, Li CW, Liu SL, Huang Y, Zhang HM, Zou LK. Metagenomic analysis of bacteria, fungi, bacteriophages, and helminths in the gut of giant pandas. Frontiers Microbiology, 2018, 9:1717.
    [59] Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ, Casero D, Courtney H, Gonzalez A, Graeber TG, Hall AB, Lake K, Landers CJ, Mallick H, Plichta DR, Prasad M, Rahnavard G, Sauk J, Shungin D1, Vázquez-Baeza Y, White III RA, IBDMDB Investigators, Braun J, Denson LA, Jansson JK, Knight R, Kugathasan S, McGovern DPB, Petrosino JF, Stappenbeck TS, Winter HS, Clish CB, Franzosa EA, Vlamakis H, Xavier RJ, Huttenhower C. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature, 2019, 569(7758):655-662.
    [60] Zhou WY, Sailani MR, Contrepois K, Zhou YJ, Ahadi S, Leopold SR, Zhang MJ, Rao V, Avina M, Mishra T, Johnson J, Lee-McMullen B, Chen SJ, Metwally AA, Tran TDB, Nguyen H, Zhou X, Albright B, Hong BY, Petersen L, Bautista E, Hanson B, Chen L, Spakowicz D, Bahmani A, Salins D, Leopold B, Ashland M, Dagan-Rosenfeld O, Rego S, Limcaoco P, Colbert E, Allister C, Perelman D, Craig C, Wei E, Chaib H, Hornburg D, Dunn J, Liang L, Rose SMSF, Kukurba K, Piening B, Rost H, Tse D, McLaughlin T, Sodergren E, Weinstock GM, Snyder M. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature, 2019, 569(7758):663-671.
    [61] Connerton PL, Richards PJ, Lafontaine GM, O'Kane PM, Ghaffar N, Cummings NJ, Smith DL, Fish NM, Connerton IF. The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens. Microbiome, 2018, 6(1):88.
    [62] Zhang BB, Lv ZP, Li Z, Wang WW, Li G, Guo YM. Dietary L-arginine supplementation alleviates the intestinal injury and modulates the gut microbiota in broiler chickens challenged by clostridium perfringens. Frontiers in Microbiology, 2018, 9:1716.
    [63] Azcarate-Peril MA, Butz N, Cadenas MB, Koci M, Ballou A, Mendoza M, Ali R, Hassan H. An attenuated Salmonella enterica serovar Typhimurium strain and galacto-oligosaccharides accelerate clearance of Salmonella infections in poultry through modifications to the gut microbiome. Applied and Environmental Microbiology, 2018, 84(5):e02526-17.
    [64] Borda-Molina D, Seifert J, Camarinha-Silva A. Current perspectives of the chicken gastrointestinal tract and its microbiome. Computational and Structural Biotechnology Journal, 2018, 16:131-139.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周雪雁,李琼毅,丁功涛,诺茹·伊扎·诺丁. 鸡肠道微生物菌群的建立发育、分布和生理学意义[J]. 微生物学报, 2020, 60(4): 641-652

复制
分享
文章指标
  • 点击次数:1154
  • 下载次数: 2247
  • HTML阅读次数: 7445
  • 引用次数: 0
历史
  • 收稿日期:2019-08-15
  • 最后修改日期:2019-10-28
  • 在线发布日期: 2020-04-10
文章二维码