基于高通量共聚焦激光扫描显微镜方法定量分析副溶血性弧菌生物被膜结构
作者:
基金项目:

国家自然科学基金面上项目(31571917,31671779);国家重点研发计划(2018YFC1602205);上海市科技兴农项目(沪农科推字2017第4-4号);上海市教育委员会科研创新计划(2017-01-07-00-10-E00056)


Quantitative analysis of Vibrio parahaemolyticus biofilm structure based on high-throughput confocal laser scanning microscopy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 副溶血性弧菌是水产品中常见的食源性致病菌,生物被膜的形成对副溶血性弧菌的环境生存和传播至关重要。这项工作的目的是评估临床和环境中分离出的44株副溶血性弧菌菌株形成的生物被膜的结构多样性。[方法] 该研究基于共聚焦激光扫描显微镜的高通量方法,使用与高分辨率成像兼容的96孔微量滴定板,结合结构分析软件ISA-2来研究生物被膜形成和结构,分析22株食品与22株临床来源的副溶血性弧菌菌株形成的生物被膜结构参数(生物体积、平均厚度、粗糙系数)。[结果] CLSM图像显示,44株副溶血性弧菌菌株在培养48 h后能够形成3D结构,进一步比较分析了临床来源菌株与环境来源菌株形成的生物被膜结构异同,发现临床菌株生物被膜的变异系数比环境菌株生物被膜的变异系数小,且同时携带tdhtrh两种毒力因子的菌株生物被膜变异性最小。凝聚层次聚类分析结果显示,副溶血性弧菌生物被膜可以分为致密且表面光滑(39%)、斑驳且表面粗糙(27%)、疏松且表面坑洼(34%),临床菌株易形成致密且表面光滑和斑驳且表面粗糙的生物被膜,而环境菌株易形成致密且表面光滑和疏松且表面坑洼的生物被膜。[结论] 该研究深入了解了副溶血性弧菌生物被膜结构差异性,为今后对临床和环境来源的副溶血性弧菌生物被膜采取不同的防控和清除措施提供了理论支撑。

    Abstract:

    [Objective] Vibrio parahaemolyticus is a common foodborne pathogen in aquatic products. The formation of biofilm is essential for the survival and spread of Vibrio parahaemolyticus. The aim of this study was to evaluate the structural diversity of biofilms formed by 44 strains of Vibrio parahaemolyticus isolated under clinical and environmental conditions. [Methods] This study proposed a high-throughput method based on confocal laser scanning microscopy (CLSM), using 96-well microtiter plates compatible with high-resolution imaging, combined with structural analysis software ISA-2 to study biofilm formation and structure, the biofilm structure parameters (Biovolume, Average thickness, Biofilmroughness) formed by 22 clinical strains and 22 environmental strains were analyzed. [Results] CLSM images showed that 44 strains of Vibrio parahaemolyticus could form 3D structure after 48 h incubation, and further analyzed the similarities and differences of biofilm formation between clinically derived strains and environmentally derived strains, showed that the coefficient of variation in the clinical strains were smaller than that of the environmental strains, and the strains BF with both tdh and trh virulence factors had the smallest variability. Agglomerative hierarchical clustering (AHC) showed that biofilm can be divided into dense and smooth surface (39%), mottled and rough surface (27%) and loose and uneven surface (34%), the clinical strain formed a biofilm which is easy to form dense and smooth surface, mottled and rough surface, whereas the environmental strain formed a biofilm which is easy to dense and smooth surface and loose and uneven surface. [Conclusion] This study provides an in-depth understanding of the biofilm structure of Vibrio parahaemolyticus, it provides theoretical support for different prevention and control measures for Vibrio parahaemolyticus biofilms from clinical and environmental sources.

    参考文献
    [1] Osei-Adjei G, Huang XX, Zhang YQ. The extracellular proteases produced by Vibrio parahaemolyticus. World Journal of Microbiology and Biotechnology, 2018, 34(5):68.
    [2] Pang R, Xie TF, Wu QP, Li YP, Lei T, Zhang JM, Ding Y, Wang J, Xue L, Chen MT, Wei XH, Zhang YX, Zhang SH, Yang XJ. Comparative genomic analysis reveals the potential risk of Vibrio parahaemolyticus isolated from ready-to-eat foods in China. Frontiers in Microbiology, 2019, 10:186.
    [3] Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus:a review on the pathogenesis, prevalence, and advance molecular identification techniques. Frontiers in Microbiology, 2014, 5:705.
    [4] Li L, Wong HC, Nong WY, Cheung MK, Law PTW, Kam KM, Kwan HS. Comparative genomic analysis of clinical and environmental strains provides insight into the pathogenicity and evolution of Vibrio parahaemolyticus. BMC Genomics, 2014, 15(1):1135.
    [5] Song XY, Ma YJ, Fu JJ, Zhao AJ, Guo ZR, Malakar PK, Pan YJ, Zhao Y. Effect of temperature on pathogenic and non-pathogenic Vibrio parahaemolyticus biofilm formation. Food Control, 2017, 73:485-491.
    [6] Flemming HC, Wingender J. The biofilm matrix. Nature Reviews Microbiology, 2010, 8(9):623-633.
    [7] Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms:an emergent form of bacterial life. Nature Reviews Microbiology, 2016, 14(9):563-575.
    [8] Nadell CD, Bassler BL. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(34):14181-14185.
    [9] Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology, 2016, 14(9):589-600.
    [10] Hannig C, Follo M, Hellwig E, Al-Ahmad A. Visualization of adherent micro-organisms using different techniques. Journal of Medical Microbiology, 2010, 59(1):1-7.
    [11] Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C. Critical review on biofilm methods. Critical Reviews in Microbiology, 2017, 43(3):313-351.
    [12] Pamp SJ, Sternberg C, Tolker-Nielsen T. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry Part A, 2009, 75(2):90-103.
    [13] Mosquera-Fernández M, Sanchez-Vizuete P, Briandet R, Cabo ML, Balsa-Canto E. Quantitative image analysis to characterize the dynamics of Listeria monocytogenes biofilms. International Journal of Food Microbiology, 2016, 236:130-137.
    [14] Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology, 2000, 146(10):2395-2407.
    [15] Yang XM, Beyenal H, Harkin G, Lewandowski Z. Quantifying biofilm structure using image analysis. Journal of Microbiological Methods, 2000, 39(2):109-119.
    [16] Beyenal H, Donovan C, Lewandowski Z, Harkin G. Three-dimensional biofilm structure quantification. Journal of Microbiological Methods, 2004, 59(3):395-413.
    [17] Yun MA, Yeon KM, Park JS, Lee CH, Chun J, Lim DJ. Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment. Water Research, 2006, 40(1):45-52.
    [18] Mueller LN, de Brouwer JF, Almeida JS, Stal LJ, Xavier JB. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecology, 2006, 6:1.
    [19] Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J, Piveteau P. Listeria monocytogenes EGD-e biofilms:No mushrooms but a network of knitted chains. Applied and Environmental Microbiology, 2008, 74(14):4491-4497.
    [20] Bridier A, Dubois-Brissonnet F, Boubetra A, Thomas V, Briandet R. The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. Journal of Microbiological Methods, 2010, 82(1):64-70.
    [21] Mukherjee M, Menon NV, Liu X, Kang YJ, Gao B. Confocal laser scanning microscopy-compatible microfluidic membrane flow cell as a nondestructive tool for studying biofouling dynamics on forward osmosis membranes. Environmental Science & Technology Letters, 2016, 3(8):303-309.
    [22] Han Q, Song XY, Zhang ZH, Fu JJ, Wang X, Malakar PK, Liu HQ, Pan YJ, Zhao Y. Removal of foodborne pathogen biofilms by acidic electrolyzed water. Frontiers in Microbiology, 2017, 8:988.
    [23] Balsa-Canto E, Vilas C, López-Núñez A, Mosquera-Fernández M, Briandet R, Cabo ML, Vázquez C. Modeling reveals the role of aging and glucose uptake impairment in L1A1 Listeria monocytogenes biofilm life cycle. Frontiers in Microbiology, 2017, 8:2118.
    [24] Resat H, Renslow RS, Beyenal H. Reconstruction of biofilm images:combining local and global structural parameters. Biofouling, 2014, 30(9):1141-1154.
    [25] Zhao AJ, Fu JJ, Song XY, Sun XH, Pan YJ, Zhao Y. Analysis of biofilm formation by pathogenic and no-pathogenic Vibrio parahaemolyticus at various temperatures and contact surfaces. Journal of Food Science and Biotechnology, 2018, 37(1):7-14. (in Chinese)赵爱静, 付娇娇, 宋雪迎, 孙晓红, 潘迎捷, 赵勇. 致病性与非致病性副溶血性弧菌在不同温度和接触材料表面生物被膜形成情况分析. 食品与生物技术学报, 2018, 37(1):7-14.
    [26] Kadam SR, den Besten HMW, van der Veen S, Zwietering MH, Moezelaar R, Abee T. Diversity assessment of Listeria monocytogenes biofilm formation:impact of growth condition, serotype and strain origin. International Journal of Food Microbiology, 2013, 165(3):259-264.
    [27] Díez-García M, Capita R, Alonso-Calleja C. Influence of serotype on the growth kinetics and the ability to form biofilms of Salmonella isolates from poultry. Food Microbiology, 2012, 31(2):173-180.
    [28] Guilbaud M, Piveteau P, Desvaux M, Brisse S, Briandet R. Exploring the diversity of Listeria monocytogenes biofilm architecture by high-throughput confocal laser scanning microscopy and the predominance of the honeycomb-like morphotype. Applied and Environmental Microbiology, 2015, 81(5):1813-1819.
    [29] Harris LG, Murray S, Pascoe B, Bray J, Meric G, Magerios L, Wilkinson TS, Jeeves R, Rohde H, Schwarz S, De Lencastre H, Miragaia M, Rolo J, Bowden R, Jolley KA, Maiden MCJ, Mack D, Sheppard SK. Biofilm morphotypes and population structure among Staphylococcus epidermidis from commensal and clinical samples. PLoS One, 2016, 11(3):e0151240.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

檀玲,郭林霞,陈博文,张昭寰,王敬敬,刘海泉,潘迎捷,赵勇. 基于高通量共聚焦激光扫描显微镜方法定量分析副溶血性弧菌生物被膜结构[J]. 微生物学报, 2020, 60(4): 715-726

复制
分享
文章指标
  • 点击次数:739
  • 下载次数: 1202
  • HTML阅读次数: 2215
  • 引用次数: 0
历史
  • 收稿日期:2019-06-26
  • 最后修改日期:2019-08-20
  • 在线发布日期: 2020-04-10
文章二维码