典型煤层水微生物产甲烷潜力及其群落结构研究
作者:
基金项目:

国家科技重大专项(2016ZX05041001-003);中国农业科学院科技创新工程(CAAS-ASTIP-2016-BIOMA)


Methanogenic potential and community structure of coalbed-methane production water microbiome
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    内蒙古自治区二连盆地、海拉尔盆地是我国重要的煤层气产区,其中生物成因煤层气是煤层气的重要来源,但复杂物质转化产甲烷相关微生物群落结构及功能尚不清楚。[目的] 研究煤层水中的微生物代谢挥发性脂肪酸产甲烷的生理特征及群落特征。[方法] 以内蒙古自治区二连盆地和海拉尔盆地的四口煤层气井水作为接种物,分别添加乙酸钠、丙酸钠和丁酸钠厌氧培养;定期监测挥发性脂肪酸降解过程中甲烷和底物的变化趋势,应用高通量测序技术,分析原始煤层气井水及稳定期产甲烷菌液的微生物群落结构。[结果] 除海拉尔盆地H303煤层气井微生物不能代谢丙酸外,其他样品均具备代谢乙酸、丙酸和丁酸产生甲烷的能力,其生理生态参数存在显著差异,产甲烷延滞期依次是乙酸 < 丁酸 < 丙酸;最大比产甲烷速率和底物转化效率依次是丙酸 < 乙酸 < 丁酸。富集培养后,古菌群落结构与煤层气井水的来源显著相关,二连盆地优势古菌为氢营养型产甲烷古菌Methanocalculus(相对丰度13.5%-63.4%)和复合营养型产甲烷古菌Methanosarcina(7.9%-51.3%),海拉尔盆地的优势古菌为氢营养型产甲烷古菌Methanobacterium(24.3%-57.4%)和复合营养型产甲烷古菌Methanosarcina(29.6%-66.5%);细菌群落则与底物类型显著相关,硫酸盐还原菌Desulfovibrio(12.0%-41.0%)、互营丙酸氧化菌Syntrophobacter(39.6%-75.5%)和互营丁酸菌Syntrophomonas(8.5%-21.9%)分别在乙酸钠、丙酸钠和丁酸钠处理组显著富集。[结论] 煤层气井水微生物可降解挥发性脂肪酸(乙酸、丙酸和丁酸)并具有产甲烷潜力;乙酸可能被古菌直接代谢产甲烷,而丙酸和丁酸通过互营细菌和产甲烷古菌代谢产甲烷。DesulfovibrioSyntrophobacterSyntrophomonas分别在乙酸、丙酸和丁酸代谢过程中发挥了重要作用。这些结果为煤层气生物强化开采提供了一定的微生物资源基础。

    Abstract:

    Biogenetic coalbed methane is a significant composition in Erlian and Hailar basins. However, little information is available how biogenetic coalbed methane is generated. [Objective] To evaluate the methanogenic potential of volatile fatty acids by the coalbed-methane production water microbiome, and to observe the shift of microbial community structure involved. [Methods] Simulation experiments were performed by inoculating coalbed-methane production water from four coalbed methane wells of Erlian and Hailar basins. Acetate, propionate and butyrate were selected as substrates. Methane production and substrate utilization were measured over time. The microbial communities of coalbed methane production water and enrichment cultures after incubation were analyzed through high-throughput sequencing of 16S rRNA gene. [Results] With the exception of H303 coalbed water without propionate degradation, all coalbed water microbiomes had the ability to degrade acetate, propionate and butyrate under methanogenic degradation. The maximum specific methane production rate, substrate conversion ratio and lag-phase period exhibited great difference in different volatile fatty acid group. The maximum specific methane production rate and substrate conversation ratio was highest in the butyrate group and the lag-phase was the shortest with acetate addition. High-throughput sequencing analysis reveals that the archaeal community structure of enrichment cultures was significantly correlated with the source of coalbed water. The predominant archaeal groups of Erlian basin were hydrogenotrophic Methanocalculus (13.5%-63.4%) and Methanosarcina (7.9%-51.3%). The predominant archaea of Hailar basin were hydrogenotrophic Methanobacterium (24.3%-57.4%) and Methanosarcina (29.6%-66.5%). The enriched bacterial community structure is significantly correlated with substrates, sulfate-reducing Desulfovibrio (12.0%-41.0%), syntrophic propionate-degrading Syntrophobacter (39.63%-75.45%) and syntrophic butyrate-degrading Syntrophomonas (8.5%-21.9%) were enriched in acetate, propionate and butyrate group, respectively. [Conclusion] The coalbed-methane production water microbiome possessed potential of methanogenic volatile fatty acid degradation, among which acetate was probably fermented by methanogens, propionate and butyrate are consumed by syntrophic bacteria Syntrophobacter and Syntrophomonas respectively. This result will contribute to the development research of microbial enhanced methane recovery from coalbed.

    参考文献
    [1] Colosimo F, Thomas R, Lloyd JR, Taylor KG, Boothman C, Smith AD, Lord R, Kalin RM. Biogenic methane in shale gas and coal bed methane:a review of current knowledge and gaps. International Journal of Coal Geology, 2016, 165:106-120.
    [2] Park SY, Liang YN. Biogenic methane production from coal:a review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel, 2016, 166:258-267.
    [3] Scott AR, Kaiser WR, Ayers Jr WB. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico-implications for coalbed gas producibility. AAPG Bulletin, 1994, 78(8):1186-1209.
    [4] Ju YW, Li QG, Yan ZF, Sun Y, Bao Y. Origin types of CBM and their geochemical research progress. Journal of China Coal Society, 2014, 39(5):806-815. (in Chinese)琚宜文, 李清光, 颜志丰, 孙盈, 鲍园. 煤层气成因类型及其地球化学研究进展. 煤炭学报, 2014, 39(5):806-815.
    [5] Iram A, Akhtar K, Ghauri MA. Coal methanogenesis:a review of the need of complex microbial consortia and culture conditions for the effective bioconversion of coal into methane. Annals of Microbiology, 2017, 67(3):275-286.
    [6] Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B, Turich C, Ashby M. Biogeochemistry of microbial coal-bed methane. Annual Review of Earth and Planetary Sciences, 2011, 39:617-656.
    [7] Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, 1997, 61(2):262-280.
    [8] Zhang X, Zhang H, Cheng L. Key players involved in methanogenic degradation of organic compounds:progress on the cultivation of syntrophic bacteria. Acta Microbiologica Sinica, 2019, 59(2):211-223. (in Chinese)张雪, 张辉, 承磊. 获取有机物厌氧降解产甲烷过程中关键功能类群——互营细菌培养物. 微生物学报, 2019, 59(2):211-223.
    [9] Zhang DY, Zhu J, Zhao XL, Gao X, Geng M, Chen G, Jiao J, Liu ST. Dynamic assessment of coalbed methane resources and availability in China. Journal of China Coal Society, 2018, 43(6):1598-1604. (in Chinese)张道勇, 朱杰, 赵先良, 高煖, 庚勐, 陈刚, 焦健, 刘思彤. 全国煤层气资源动态评价与可利用性分析. 煤炭学报, 2018, 43(6):1598-1604.
    [10] Sun FJ, Li WZ, Sun QP, Sun B, Tian WG, Chen YJ, Chen ZH. Low-rank coalbed methane exploration in Jiergalangtu sag, Erlian Basin. Acta Petrolei Sinica, 2017, 38(5):485-492. (in Chinese)孙粉锦, 李五忠, 孙钦平, 孙斌, 田文广, 陈彦君, 陈振宏. 二连盆地吉尔嘎朗图凹陷低煤阶煤层气勘探. 石油学报, 2017, 38(5):485-492.
    [11] Lu SF, Shen JN, Wang ZP, Li C. Resource evaluation of coalbed gas and potential analysis in Hailar Basin. Coal Geology & Exploration, 2003, 31(6):28-31. (in Chinese)卢双舫, 申家年, 王振平, 李椿. 海拉尔盆地煤层气资源评价及潜力分析. 煤田地质与勘探, 2003, 31(6):28-31.
    [12] Liu HL, Li JM, Wang HY, Zhao QB. Exploring foreground of low rank coal basins in eastern inner mongolia of China. Natural Gas Geoscience, 2005, 16(6):771-775. (in Chinese)刘洪林, 李景明, 王红岩, 赵庆波. 内蒙古东部低煤阶含煤盆地群的煤层气勘探前景. 天然气地球科学, 2005, 16(6):771-775.
    [13] Sun QP, Wang SW, Tian WG, Sun B, Chen YJ, Yang Q, Chen H, Yang MF, Qi L. Accumulation patterns of low-rank coalbed methane gas in the Jiergalangtu Sag of the Erlian Basin. Natural Gas Industry, 2018, 38(4):59-66. (in Chinese)孙钦平, 王生维, 田文广, 孙斌, 陈彦君, 杨青, 陈浩, 杨敏芳, 祁灵. 二连盆地吉尔嘎朗图凹陷低煤阶煤层气富集模式. 天然气工业, 2018, 38(4):59-66.
    [14] He Q, Ding C, Li GZ, Chen H, Cheng L, Zhang H. Methane-generating potential of coal samples with different maturity. Acta Microbiologica Sinica, 2013, 53(12):1307-1317. (in Chinese)何乔, 丁晨, 李贵中, 陈浩, 承磊, 张辉. 不同成熟度煤样产甲烷潜力. 微生物学报, 2013, 53(12):1307-1317.
    [15] Beckmann S, Luk AWS, Gutierrez-Zamora ML, Chong NHH, Thomas T, Lee M, Manefield M. Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation. The ISME Journal, 2019, 13(3):632-650.
    [16] Powell GE. Interpreting gas kinetics of batch cultures. Biotechnology Letters, 1983, 5(7):437-440.
    [17] Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 2005, 89(6):670-679.
    [18] Herfort L, Kim JH, Coolen MJL, Abbas B, Schouten S, Herndl GJ, Sinninghe Damsté JS. Diversity of Archaea and detection of crenarchaeotal amoA genes in the rivers Rhine and Têt. Aquatic Microbial Ecology, 2009, 55(2):189-201.
    [19] Tu B, Domene X, Yao MJ, Li CN, Zhang SH, Kou YP, Wang YS, Li XZ. Microbial diversity in Chinese temperate steppe:unveiling the most influential environmental drivers. FEMS Microbiology Ecology, 2017, 93(4):fix031, doi:10.1093/femsec/fix031.
    [20] Cheng L, Zheng ZZ, Wang C, Zhang H. Recent advances in methanogens. Microbiology China, 2016, 43(5):1143-1164. (in Chinese)承磊, 郑珍珍, 王聪, 张辉. 产甲烷古菌研究进展. 微生物学通报, 2016, 43(5):1143-1164.
    [21] Zhang CY, Liu XL, Dong XZ. Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(3):969-973.
    [22] Sieber JR, McInerney MJ, Gunsalus RP. Genomic insights into syntrophy:the paradigm for anaerobic metabolic cooperation. Annual Review of Microbiology, 2012, 66:429-452.
    [23] McInerney MJ, Bryant MP. Anaerobic degradation of lactate by syntrophic associations of methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Applied and Environmental Microbiology, 1981, 41(2):346-354.
    [24] Tatton MJ, Archer DB, Powell GE, Parker ML. Methanogenesis from ethanol by defined mixed continuous cultures. Applied and Environmental Microbiology, 1989, 55(2):440-445.
    [25] Phelps TJ, Conrad R, Zeikus JG. Sulfate-dependent interspecies H2 transfer between Methanosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism of acetate or methanol. Applied and Environmental Microbiology, 1985, 50(3):589-594.
    [26] Ozuolmez D, Na H, Lever MA, Kjeldsen KU, Jørgensen BB, Plugge CM. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate:teamwork or coexistence? Frontiers in Microbiology, 2015, 6:492.
    [27] Davis KJ, Barnhart EP, Fields MW, Gerlach R. Biogenic coal-to-methane conversion efficiency decreases after repeated organic amendment. Energy & Fuels, 2018, 32(3):2916-2925.
    [28] Guo HG, Yu ZS, Thompson IP, Zhang HX. A contribution of hydrogenotrophic methanogenesis to the biogenic coal bed methane reserves of Southern Qinshui Basin, China. Applied Microbiology and Biotechnology, 2014, 98(21):9083-9093.
    [29] Papendick SL, Downs KR, Vo KD, Hamilton SK, Dawson GKW, Golding SD, Gilcrease PC. Biogenic methane potential for Surat Basin, Queensland coal seams. International Journal of Coal Geology, 2011, 88(2/3):123-134.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

来守超,方晓瑜,涂波,陈浩,邓泽,李贵中,陈振宏,张辉,承磊. 典型煤层水微生物产甲烷潜力及其群落结构研究[J]. 微生物学报, 2020, 60(4): 727-738

复制
分享
文章指标
  • 点击次数:872
  • 下载次数: 1476
  • HTML阅读次数: 1635
  • 引用次数: 0
历史
  • 收稿日期:2019-06-29
  • 最后修改日期:2019-09-30
  • 在线发布日期: 2020-04-10
文章二维码