基于转录组测序数据对Weissella confusa XU1中低聚木糖代谢系统的分析
作者:
基金项目:

浙江省自然科学基金(LY15C200012);丽水市高层次人才项目(2016RC01);浙江省重点研发计划(2018C02031)


Transcriptome analysis of xylo-oligosaccharides utilization systems in Weissella confusa XU1
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]近年来由于在发酵方面的良好特性,低聚木糖的益生作用越来越得到公众的关注。研究发现相比于葡萄糖和木糖Weissella confusa XU1在以低聚木糖为唯一碳源时生长情况最好。本文将对Weissella confusa XU1中低聚木糖的代谢机制进行研究。[方法]本研究分别以葡萄糖、木糖和低聚木糖作为唯一碳源对Weissella confusa XU1进行转录组测序并进行比较分析。[结果]通过转录组分析发现以低聚木糖为唯一碳源的处理中部分编码MFS转运蛋白和糖基水解酶的基因转录水平显著上升,Weissella confusa XU1中的糖酵解过程和磷酸戊糖途径也得到显著增强。[结论]本研究根据转录组数据分析得出Weissella confusa XU1中的低聚木糖代谢机制。本研究首次在革兰氏阳性菌中发现MFS转运蛋白参与到低聚木糖转运的过程,为提高微生物对木聚糖利用效率进行分子改造提供了改造方向,该机制为低聚木糖代谢的研究和Weissella的工业化应用提供了新的思路。

    Abstract:

    [Objective] The prebiotic effect of xylo-oligosaccharides (XOS) has obtained much attention in recent years due to their fermentation properties. In this study, a kimchi-derived strain, Weissella confusa XU1 grew better on XOS than on glucose and xylose. The mechanism of XOS utilization by W. confusa XU1 was further explored. [Methods] Differential transcriptomes of W. confusa XU1, induced by XOS, glucose and xylose, were analyzed to identify the genetic loci involved in the uptake and catabolism of XOS. [Results] Transcriptome analysis reveals that several major facilitator superfamily (MFS) transporters and glycoside hydrolases were involved in the uptake and hydrolysis of XOS. In addition, glycolysis pathway and pentose phosphate pathway in W. confusa XU1 were enhanced when XOS were present, indicating that XOS were utilized more efficiently compared with other carbon sources. [Conclusion] This study reveals a proposed XOS utilization mechanism in W. confusa XU1.

    参考文献
    [1] Fuller R. Probiotics in man and animals. Journal of Applied Bacteriology, 1989, 66(5):365-378.
    [2] Ouwehand AC, Kirjavainen PV, Shortt C, Salminen S. Probiotics:mechanisms and established effects. International Dairy Journal, 1999, 9(1):43-52.
    [3] Chang YH, Kim JK, Kim HJ, Kim WY, Kim YB, Park YH. Selection of a potential probiotic Lactobacillus strain and subsequent in vivo studies. Antonie van Leeuwenhoek, 2001, 80(2):193-199.
    [4] Lee YK, Salminen S. The coming of age of probiotics. Trends in Food Science & Technology, 1995, 6(7):241-245.
    [5] Lee KW, Park JY, Jeong HR, Heo HJ, Han NS, Kim JH. Probiotic properties of Weissella strains isolated from human faeces. Anaerobe, 2012, 18(1):96-102.
    [6] Tanaka Y, Watanabe J, Mogi Y. Monitoring of the microbial communities involved in the soy sauce manufacturing process by PCR-denaturing gradient gel electrophoresis. Food Microbiology, 2012, 31(1):100-106.
    [7] Collins MD, Samelis J, Metaxopoulos J, Wallbanks S. Taxonomic studies on some Leuconostoc-like organisms from fermented sausages:description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. Journal of Applied Bacteriology, 1993, 75(6):595-603.
    [8] Björkroth J, Dicks LMT, Endo A. The genus Weissella//Holzapfel WH, Wood BJB. Lactic Acid Bacteria:Biodiversity and Taxonomy. Chichester:Wiley Blackwell, 2014:418-428.
    [9] De Bruyne K, Camu N, De Vuyst L, Vandamme P. Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(9):1999-2005.
    [10] Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of Nutrition, 2000, 130(7):1695-1699.
    [11] Bounaix MS, Robert H, Gabriel V, Morel S, Remaud-Siméon M, Gabriel B, Fontagné-Faucher C. Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiology Letters, 2010, 311(1):18-26.
    [12] Grootaert C, van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, Verstraete W, van de Wiele T. Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology, 2009, 69(2):231-242.
    [13] Vázquez MJ, Alonso JL, Domı́nguez H, Parajó JC. Xylooligosaccharides:manufacture and applications. Trends in Food Science & Technology, 2000, 11(11):387-393.
    [14] Campbell JM, Fahey Jr GC, Wolf BW. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. The Journal of Nutrition, 1997, 127(1):130-136.
    [15] Hsu CK, Liao JW, Chung YC, Hsieh CP, Chan YC. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. The Journal of Nutrition, 2004, 134(6):1523-1528.
    [16] Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota:updating the concept of prebiotics. Nutrition Research Reviews, 2004, 17(2):259-275.
    [17] Gobinath D, Madhu AN, Prashant G, Srinivasan K, Prapulla SG. Beneficial effect of xylo-oligosaccharides and fructo-oligosaccharides in streptozotocin-induced diabetic rats. British Journal of Nutrition, 2010, 104(1):40-47.
    [18] Lasrado LD, Gudipati M. Purification and characterization of β-D-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohydrate Polymers, 2013, 92(2):1978-1983.
    [19] Amaretti A, Bernardi T, Leonardi A, Raimondi S, Zanoni S, Rossi M. Fermentation of xylo-oligosaccharides by Bifidobacterium adolescentis DSMZ 18350:kinetics, metabolism, and β-xylosidase activities. Applied Microbiology and Biotechnology, 2013, 97(7):3109-3117.
    [20] Lei Z, Wu YQ, Nie W, Yin DF, Yin XN, Guo YM, Aggrey SE, Yuan JM. Transcriptomic analysis of xylan oligosaccharide utilization systems in Pediococcus acidilactici strain BCC-1. Journal of Agricultural and Food Chemistry, 2018, 66(18):4725-4733.
    [21] Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe EC, Baslé A, Morland C, Day AM, Zheng HJ, Rogers TE, Thompson P, Hawkins AR, Yadav MP, Henrissat B, Martens EC, Dupree P, Gilbert HJ, Bolam DN. Glycan complexity dictates microbial resource allocation in the large intestine. Nature Communications, 2015, 6(1):7481.
    [22] Goldberg T, Hecht M, Hamp T, Karl T, Yachdav G, Ahmed N, Altermann U, Angerer P, Ansorge S, Balasz K, Bernhofer M, Betz A, Cizmadija L, Do KT, Gerke J, Greil R, Joerdens V, Hastreiter M, Hembach K, Herzog M, Kalemanov M, Kluge M, Meier A, Nasir H, Neumaier U, Prade V, Reeb J, Sorokoumov A, Troshani I, Vorberg S, Waldraff S, Zierer J, Nielsen H, Rost B. LocTree3 prediction of localization. Nucleic Acids Research, 2014, 42(Web Server issue):W350-W355.
    [23] BRENDA. Information on EC 3.2.1.23-beta-galactosidase.[2017-06-13]. http://www.brenda-enzymes.org/enzyme.php?ecno=3.2.1.23.
    [24] Andersen JM, Barrangou R, Hachem MA, Lahtinen SJ, Goh YJ, Svensson B, Klaenhammer TR. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics, 2013, 14(1):312.
    [25] Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiological Reviews, 1996, 60(4):575-608.
    [26] Poolman B, Konings WN. Secondary solute transport in bacteria. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1993, 1183(1):5-39.
    [27] Zhang XC, Zhao Y, Heng J, Jiang DH. Energy coupling mechanisms of MFS transporters. Protein Science, 2015, 24(10):1560-1579.
    [28] Wamelink MMC, Struys EA, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway:a review. Journal of Inherited Metabolic Disease, 2008, 31(6):703-717.
    [29] Johansson B, Hahn-Hägerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Research, 2002, 2(3):277-282.
    [30] Bruinenberg PM, Van Dijken JP, Scheffers WA. An enzymic analysis of NADPH production and consumption in Candida utilis. Microbiology, 1983, 129(4):965-971.
    [31] Nogae I, Johnston M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene, 1990, 96(2):161-169.
    [32] Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Applied and Environmental Microbiology, 2002, 68(4):1604-1609.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

戚家明,张东旭,王少丽,黄立斌,夏丽丽,董汪洋,郑强,刘青娥,肖建中,徐志文. 基于转录组测序数据对Weissella confusa XU1中低聚木糖代谢系统的分析[J]. 微生物学报, 2020, 60(5): 912-923

复制
分享
文章指标
  • 点击次数:832
  • 下载次数: 958
  • HTML阅读次数: 1017
  • 引用次数: 0
历史
  • 收稿日期:2019-08-06
  • 最后修改日期:2019-10-02
  • 在线发布日期: 2020-05-11
文章二维码