基于比较基因组学分析嗜热链球菌的遗传多样性和防御系统
作者:
基金项目:

国家自然科学基金(31430066,31771954)


Comparative genomics of genetic diversity and defense system in Streptococcus thermophilus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]嗜热链球菌(Streptococcus thermophilus)是发酵乳制品的基础发酵菌种之一,全基因组水平解析嗜热链球菌的遗传多样性和工业发酵特性对于优良发酵菌株的筛选意义重大。[方法]本研究通过比较基因组学方法对27株嗜热链球菌的遗传多样性和防御系统进行分析。[结果]全基因组分析结果显示嗜热链球菌群体内具有较高的遗传多样性;基于核心基因集构建的系统发育树划分为2个分支,其中分支2菌株缺乏完整的组氨酸合成途径,经验证,分支2菌株在缺乏组氨酸的培养基中不能正常生长。通过对嗜热链球菌不同菌株的防御系统进行分析发现,同类型的CRISPR基因座和限制修饰系统在基因组中出现的位置相对固定。CRISPR-Cas系统(P<0.05,r=0.43)和限制修饰系统(P<0.01,r=-0.59)的数量与编码转座酶基因的数量均显著相关,表明嗜热链球菌为了阻止外源DNA入侵会进化出多种防御系统来保护自身遗传完整性。此外,分支1菌株的CRISPR-Cas系统数量极显著(P<0.001)多于分支2,而限制修饰系统无显著差异,表明分支1菌株在噬菌体抗性方面可能更具优势。[结论]本研究基于核心基因构建的系统发育分析将27株嗜热链球菌分为2个分支,不同分支菌株在组氨酸代谢能力和防御系统方面有一定差异。该研究结果为今后快速筛选优良嗜热链球菌发酵剂提供了新思路。

    Abstract:

    [Objective] Streptococcus thermophilus is one of the most commonly used strains in fermented dairy industry. Therefore, it is important to screen S. thermophilus with good fermentation properties. [Methods] The genetic diversity and defense systems of 27 S. thermophilus genomes were analyzed using comparative genomics. [Results] The genetic diversity of S. thermophilus was high based on whole genome analysis. The phylogenetic tree built based on the core genes was divided into two clades, and the strains in Clade 2 were lack of the complete histidine synthesis pathway, thus could not grow normally in the medium lacking histidine. The analysis of defense systems of S. thermophilus reveals the same type of CRISPR locus and restriction modification system was fixed in the genome relatively. The numbers of CRISPR-Cas (P<0.05, r=0.43) and restriction modification systems (P<0.01, r=-0.59) correlated significantly with the number of genes encoding transposases, indicating S. thermophilus has evolved multiple defense systems to protect its genetic integrity by preventing the invasion of exogenous DNA. In addition, the number of CRISPR-Cas system of the Clade 1 strains was significantly (P<0.001) higher than the Clade 2 strains, whereas there was no significant difference in restriction modification systems. These results suggest that the Clade 1 strains had stronger capacity in resistance to phages. [Conclusion] The phylogenetic analysis based on the core genes was divided into two clades. There were some differences in histidine metabolism and defense system between the different clades, providing a new method for the rapid screening of S. thermophilus starters with excellent fermentation characteristics.

    参考文献
    [1] Goh YJ, Goin C, O'Flaherty S, Altermann E, Hutkins R. Specialized adaptation of a lactic acid bacterium to the milk environment:the comparative genomics of Streptococcus thermophilus LMD-9. Microbial Cell Factories, 2011, 10(1):S22.
    [2] Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich SD, Guédon E, Monnet V, Renault P, Kleerebezem M. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiology Reviews, 2005, 29(3):435-463.
    [3] Zhong Z, Sun TS, Chen YF. Genomic insights into the high exopolysaccharides-producing bacterium Streptococcus thermophilus ND-07. China Dairy Industry, 2018, 46(4):9-11, 21. (in Chinese)钟智, 孙天松, 陈永福. 基因组分析揭示Streptococcus thermophilus ND-07富产胞外多糖分子机制. 中国乳品工业, 2018, 46(4):9-11, 21.
    [4] Li W, Wang NN, Zhang DQ, Huo GC. CRISPR detection and protospacer prediction in Streptococcus thermophilus. Modern Food Science and Technology, 2016, 32(10):252-258. (in Chinese)李婉, 王娜娜, 张丹青, 霍贵成. 嗜热链球菌CRISPR序列的检测及原间隔序列预测. 现代食品科技, 2016, 32(10):252-258.
    [5] Binetti AG, Suárez VB, Tailliez P, Reinheimer JA. Characterization of spontaneous phage-resistant variants of Streptococcus thermophilus by randomly amplified polymorphic DNA analysis and identification of phage-resistance mechanisms. International Dairy Journal, 2007, 17(9):1115-1122.
    [6] Dupuis MÈ, Villion M, Magadán AH, Moineau S. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nature Communications, 2013, 4:2087.
    [7] 赵洁. 自然发酵乳中嗜热链球菌群体遗传学和功能基因组学研究. 内蒙古农业大学博士学位论文, 2018.
    [8] Vale PF, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proceedings of the Royal Society B:Biological Sciences, 2015, 282(1812):20151270.
    [9] Hidalgo-Cantabrana C, Crawley AB, Sanchez B, Barrangou R. Characterization and exploitation of CRISPR loci in Bifidobacterium longum. Frontiers in Microbiology, 2017, 26(8):1851.
    [10] Briner AE, Barrangou R. Deciphering and shaping bacterial diversity through CRISPR. Current Opinion in Microbiology, 2016, 31:101-108.
    [11] Hidalgo-Cantabrana C, O'Flaherty S, Barrangou R. CRISPR-based engineering of next-generation lactic acid bacteria. Current Opinion in Microbiology, 2017, 37:79-87.
    [12] Humbert O, Dorer MS, Salama NR. Characterization of Helicobacter pylori factors that control transformation frequency and integration length during inter-strain DNA recombination. Molecular Microbiology, 2011, 79(2):387-401.
    [13] 宋宇琴. 德氏乳杆菌保加利亚亚种的群体遗传学和功能基因组学研究. 内蒙古农业大学博士学位论文, 2018.
    [14] Letort C, Juillard V. Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. Journal of Applied Microbiology, 2001, 91(6):1023-1029.
    [15] Seemann T. Prokka:rapid prokaryotic genome annotation. Bioinformatics, 2014, 30(14):2068-2069.
    [16] Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database:a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 2000, 28(1):33-36.
    [17] Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS:an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 2007, 35(S2):W182-W185.
    [18] Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(1):81-91.
    [19] Chen JP, Yang XW, Chen JW, Cen Z, Guo CY, Jin T, Cui YJ. SISP:a fast species identification system for prokaryotes based on total nucleotide identity of whole genome sequences. Infectious Diseases and Translational Medicine, 2015, 1(1):30-55.
    [20] Darling ACE, Mau B, Blattner FR, Perna NT. Mauve:multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 2004, 14(7):1394-1403.
    [21] Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary:rapid large-scale prokaryote pan genome analysis. Bioinformatics, 2015, 31(22):3691-3693.
    [22] Kumar S, Stecher G, Tamura K. MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
    [23] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8:172.
    [24] Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE——a database for DNA restriction and modification:enzymes, genes and genomes. Nucleic Acids Research, 2015, 43(D1):D298-D299.
    [25] Nishio Y, Nakamura Y, Usuda Y, Sugimoto S, Matsui K, Kawarabayasi Y, Kikuchi H, Gojobori T, Ikeo K. Evolutionary process of amino acid biosynthesis in Corynebacterium at the whole genome level. Molecular Biology and Evolution, 2004, 21(9):1683-1691.
    [26] Desiere F, Lucchini S, Brüssow H. Evolution of Streptococcus thermophilus bacteriophage genomes by modular exchanges followed by point mutations and small deletions and insertions. Virology, 1998, 241(2):345-356.
    [27] Alexandraki V, Kazou M, Blom J, Pot B, Tsakalidou E, Papadimitriou K. The complete genome sequence of the yogurt isolate Streptococcus thermophilus ACA-DC 2. Standards in Genomic Sciences, 2017, 12:18.
    [28] 薛花. 两个新型结核杆菌DNA甲基化酶的鉴定和性质初步分析. 中国科学院北京基因组研究所硕士学位论文, 2015.
    [29] Li BL, Ding XY, Jin D, Liu F, Meng YY, Li N, Zhao L, Huo GC. Genomic studies of proteolysis system and amino acid biosynthesis pathway in Streptococcus thermophilus KLDS SM. Food Science, 2018, 39(18):120-126. (in Chinese)李柏良, 丁秀云, 靳妲, 刘飞, 蒙月月, 李娜, 赵莉, 霍贵成. 基于基因组学分析嗜热链球菌KLDS SM的蛋白质水解系统和氨基酸合成途径. 食品科学, 2018, 39(18):120-126.
    [30] Fontaine L, Dandoy D, Boutry C, Delplace B, De Frahan MH, Fremaux C, Horvath P, Boyaval P, Hols P. Development of a versatile procedure based on natural transformation for marker-free targeted genetic modification in Streptococcus thermophilus. Applied and Environmental Microbiology, 2010, 76(23):7870-7877.
    [31] Pastink MI, Teusink B, Hols P, Visser S, de Vos WM, Hugenholtz J. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Applied and Environmental Microbiology, 2009, 75(11):3627-3633.
    [32] Tian H, Liang HZ, Huo GC, Etareri ES. Research progress on the property and application of Streptococcus thermophilus. Biotechnology Bulletin, 2015, 31(9):38-48. (in Chinese)田辉, 梁宏彰, 霍贵成, Etareri ES. 嗜热链球菌的特性与应用研究进展. 生物技术通报, 2015, 31(9):38-48.
    [33] Sun ZH, Harris HMB, McCann A, Guo CY, Argimón S, Zhang WY, Yang XW, Jeffery IB, Cooney JC, Kagawa TF, Liu WJ, Song YQ, Salvetti E, Wrobel A, Rasinkangas P, Parkhill J, Rea MC, O'Sullivan O, Ritari J, Douillard FP, Ross RP, Yang RF, Briner AE, Felis GE, de Vos WM, Barrangou R, Klaenhammer TR, Caufield PW, Cui YJ, Zhang HP, O'Toole PW. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications, 2015, 6:8322.
    [34] Schmid M, Muri J, Melidis D, Varadarajan AR, Somerville V, Wicki A, Moser A, Bourqui M, Wenzel C, Eugster-Meier E, Frey JE, Irmler S, Ahrens CH. Comparative genomics of completely sequenced Lactobacillus helveticus genomes provides insights into strain-specific genes and resolves metagenomics data down to the strain level. Frontiers in Microbiology, 2018, 9:63.
    [35] Makarova KS, Wolf YI, Koonin EV. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Research, 2013, 41(8):4360-4377.
    [36] Magadán AH, Dupuis M-È, Villion M, Moineau S. Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system. PLoS One, 2012, 7(7):e40913.
    [37] Gogleva AA, Gelfand MS, Artamonova II. Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs. BMC Genomics, 2014, 15:202.
    [38] Stern A, Sorek R. The phage-host arms race:shaping the evolution of microbes. Bioessays, 2011, 33(1):43-51.
    [39] Gorrell R, Kwok T. The Helicobacter pylori methylome:roles in gene regulation and virulence. Current Topics in Microbiology and Immunology, 2017, 400:105-127.
    相似文献
    引证文献
引用本文

王宇,赵洁,孙志宏,孙天松,张和平. 基于比较基因组学分析嗜热链球菌的遗传多样性和防御系统[J]. 微生物学报, 2020, 60(5): 924-938

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-08-11
  • 最后修改日期:2019-11-13
  • 在线发布日期: 2020-05-11
文章二维码