高效组成型分泌表达木素过氧化物酶酿酒酵母工程菌的构建
作者:
基金项目:

国家重点研发计划(2017YFD0501005)


Construction of an engineered Saccharomyces cerevisiae for lignin peroxidase production
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]为了获得高产木素过氧化物酶酿酒酵母工程菌。[方法]本研究从黄孢原毛平革菌中克隆了木素过氧化物酶(lignin peroxidases,LiP)基因,全长2193 bp,编码371个氨基酸,并与来源于酿酒酵母的PGK启动子序列、来源于pPIC9K质粒的α-信号肽序列以及来源于pSH65质粒的CYC1终止子序列通过重叠延伸PCR构建完整表达盒(PαLiC),利用rDNA整合法构建木素过氧化物酶酿酒酵母表达载体,实现木素过氧化物酶在酿酒酵母中的多拷贝表达。利用数字微滴PCR技术对拷贝数进行鉴定,探究拷贝数与蛋白表达量之间的关系。[结果]通过rDNA整合法得到拷贝数为1、2、4、5、6、7、8、9、10、11、12和13的木素过氧化物酶酿酒酵母工程菌,通过对其酶活测定,表明当拷贝数为7时,酶活力最高,为367 U/L。[结论]本研究在酿酒酵母中表达了木素过氧化物酶,研究了其基因拷贝数与酶活性的关系,对木质素降解技术的发展具有重要意义。

    Abstract:

    [Objective] To obtain engineered Saccharomyces cerevisiae with high-yield of lignin peroxidase. [Methods] We cloned a constitutive promoter PGK, an exogenous protein secretion signal peptide α-factor, lignin peroxidases (LiP) genes and a terminator CYC1. We constructed complete expression box (PαLC) by overlap extension PCR method. Then, we established expression vector of lignin peroxidase S. cerevisiae via rDNA integration method, to achieve multi-copy expression of lignin peroxidase in S. cerevisiae. Then, we identified the copy number via droplet digital PCR technology, to explore the relationship between the copy number and protein expression amount. [Results] We got the engineered strain of S. cerevisiae to produce lignin peroxidase with the copy number of 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 via rDNA integration method, through enzymatic activity determination, it shows that the enzymatic activity is as highest as 367 U/L when the copy number is 7. [Conclusion] In this study, lignin peroxidase was expressed in S. cerevisiae, and the relationship between gene copy number and enzyme activity was studied, which is of great significance to the development of lignin degradation technology.

    参考文献
    [1] Pham LTM, Eom MH, Kim YH. Inactivating effect of phenolic unit structures on the biodegradation of lignin by lignin peroxidase from Phanerochaete chrysosporium. Enzyme and Microbial Technology, 2014, 61-62:48-54.
    [2] Peng X, Yuan XZ, Zeng GM, Huang HJ, Wang H, Liu H, Bao S, Ma YJ, Cui KL, Leng LJ, Xiao ZH. Synchronous extraction of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium fermentation broth. Separation and Purification Technology, 2014, 123:164-170.
    [3] Wang W, Wen XH. Expression of lignin peroxidase H2 from Phanerochaete chrysosporium by multi-copy recombinant Pichia strain. Journal of Environmental Sciences, 2009, 21(2):218-222.
    [4] Liu JL, Liu TJ, Yu Y, Li TM, Yi H. Expression of lignin degrading enzyme system in Pichia pastoris and the activity of degrading lignin. Jiangsu Agricultural Sciences, 2015, 43(11):58-62. (in Chinese)刘金雷, 刘天佳, 于莹, 李天明, 仪宏. 木质素降解酶系在毕赤酵母中的表达及降解木质素的活性. 江苏农业科学, 2015, 43(11):58-62.
    [5] Lu Y, Zhong H, Tang Q, Huang ZJ, Jing NN, Smith J, Miao RJ, Li YP, Yuan H. Construction and verification of CYP3A5 gene polymorphisms using a Saccharomyces cerevisiae expression system to predict drug metabolism. Molecular Medicine Reports, 2017, 15(4):1593-1600.
    [6] James SA, West C, Davey RP, Dicks J, Roberts IN. Prevalence and dynamics of ribosomal DNA micro-heterogeneity are linked to population history in two contrasting yeast species. Scientific Reports, 2016, 6:28555.
    [7] Qiao LX, Zhang SJ, Shi Y, Chen DX. A novel method for constructing recombinant plasmid of CCL3L1 tandem repeats via isocaudamer technology. Progress in Modern Biomedicine, 2012, 12(2):239-241, 234. (in Chinese)乔录新, 张世杰, 石英, 陈德喜. 基于同尾酶技术构建CCL3L1基因串联重组质粒的方法. 现代生物医学进展, 2012, 12(2):239-241, 234.
    [8] Gao MZ, Zhu RY, Chen Y, Jin J. Construction and expression of eukaryotic plasmid with dual-promoters and dual-reporter genes. Chinese Journal of Biologicals, 2012, 25(9):1130-1134. (in Chinese)高明珠, 朱瑞宇, 陈蕴, 金坚. 双启动子双报告基因真核表达质粒的构建及表达. 中国生物制品学杂志, 2012, 25(9):1130-1134.
    [9] 孙恒一. 多拷贝人/鲑嵌合降钙素在酿酒酵母中表达优化及安全性评价研究. 中国海洋大学博士学位论文, 2015.
    [10] Gietz RD, Woods RA. Yeast transformation by the LiAc/SS Carrier DNA/PEG method//Xiao W. Yeast Protocol. Totowa, NJ:Humana Press, 2006:107-120.
    [11] Gao LL, Wang QH, Liang HC, Gong T, Yang JL, Zhu P. Construction of Saccharomyces cerevisiae haploid mutant deficient in lanosterol synthase gene. Acta Pharmaceutica Sinica, 2014, 49(5):742-746. (in Chinese)高丽丽, 王庆华, 梁会超, 巩婷, 杨金玲, 朱平. 酿酒酵母羊毛甾醇合酶基因单倍体缺陷型突变株的构建. 药学学报, 2014, 49(5):742-746.
    [12] Lan X, Zhang ST, Li Z, Chang H, Sun Y, Wang G, Chen H, Wang CF, Chen G. Application of droplet digital PCR in screening of genetically modified Saccharomyces cerevisiae for multicopy expression of xylanase. Food Science, 2018, 39(10):179-184. (in Chinese)兰雪, 张斯童, 李哲, 常浩, 孙旸, 王刚, 陈欢, 王春凤, 陈光. 微滴数字PCR技术在多拷贝木聚糖酶酿酒酵母工程菌筛选中的应用. 食品科学, 2018, 39(10):179-184.
    [13] Cavalli M, de Novi LA, Della Starza I, Cappelli LV, Nunes V, Pulsoni A, del Giudice I, Guarini A, Foà R. Comparative analysis between RQ-PCR and digital droplet PCR of BCL2/IGH gene rearrangement in the peripheral blood and bone marrow of early stage follicular lymphoma. British Journal of Haematology, 2017, 177(4):588-596.
    [14] Srisutham S, Saralamba N, Malleret B, Rénia L, Dondorp AM, Imwong M. Four human Plasmodium species quantification using droplet digital PCR. PLoS One, 2017, 12(4):e0175771.
    [15] Arvia R, Sollai M, Pierucci F, Urso C, Massi D, Zakrzewska K. Droplet digital PCR (ddPCR) vs quantitative real-time PCR (qPCR) approach for detection and quantification of Merkel cell polyomavirus (MCPyV) DNA in formalin fixed paraffin embedded (FFPE) cutaneous biopsies. Journal of Virological Methods, 2017, 246:15-20.
    [16] Suzawa K, Yamamoto H, Ohashi K, Hashida S, Tomida S, Kubo T, Maki Y, Soh J, Tsukuda K, Kiura K, Miyoshi S, Toyooka S. Optimal method for quantitative detection of plasma EGFR T790M mutation using droplet digital PCR system. Oncology Reports, 2017, 37(5):3100-3106.
    [17] Tien M, Kirk TK. Lignin peroxidase of Phanerochaete chrysosporium. Methods in Enzymology, 1988, 161:238-249.
    [18] Kline MC, Duewer DL. Evaluating droplet digital polymerase chain reaction for the quantification of human genomic DNA:lifting the traceability fog. Analytical Chemistry, 2017, 89(8):4648-4654.
    [19] Monfort A, Finger S, Sanz P, Prieto JA. Evaluation of different promoters for the efficient production of heterologous proteins in baker's yeast. Biotechnology Letters, 1999, 21(3):225-229.
    [20] Madhavan A, Pandey A, Sukumaran RK. Expression system for heterologous protein expression in the filamentous fungus Aspergillus unguis. Bioresource Technology, 2017, 245:1334-1342.
    [21] Herrmann GF, Krezdorn C, Malissard M, Kleene R, Paschold H, Weusterbotz D, Kragl U, Berger EG, Wandrey C. Large-scale production of a soluble human β-1,4-galactosyltransferase using a Saccharomyces cerevisiae expression system. Protein Expression and Purification, 1995, 6(1):72-78.
    [22] Ferrarese L, Trainotti L, Gattolin S, Casadoro G. Secretion, purification and activity of two recombinant pepper endo-β-1,4-glucanases expressed in the yeast Pichia pastoris. FEBS Letters, 1998, 422(1):23-26.
    [23] Wu ZQ, Jia NB, Li N, Wang RJ, Ma BC, Wang CY, Li MG. Construction and functional analysis of yeast integrated vector. Bulletin of Biology, 2008, 43(5):47-50. (in Chinese)武志强, 贾耐兵, 李娜, 王瑞菊, 马百成, 王翠艳, 李明刚. 酵母整合型载体的构建及其功能分析. 生物学通报, 2008, 43(5):47-50.
    [24] Cheng C, Xiong L, Li YH, Xu YH, Meng QS, Liu CG, Zhao XQ, Bai FW. Construction of mixed-sugar fermenting recombinant Saccharomyces cerevisiae and ethanol production from Jerusalem artichoke stalk by simultaneous saccharification and fermentation. Microbiology China, 2016, 43(7):1411-1418. (in Chinese)程诚, 熊亮, 李勇昊, 徐友海, 孟庆山, 刘晨光, 赵心清, 白凤武. 混合糖发酵重组酿酒酵母的菌株构建和菊芋秸秆同步糖化发酵研究. 微生物学通报, 2016, 43(7):1411-1418.
    [25] Emmerstorfer A, Wimmer-Teubenbacher M, Wriessnegger T, Leitner E, Müller M, Kaluzna I, Schürmann M, Mink D, Zellnig G, Schwab H, Pichler H. Over-expression of ICE2 stabilizes cytochrome P450 reductase in Saccharomyces cerevisiae and Pichia pastoris. Biotechnology Journal, 2015, 10(4):623-635.
    [26] Gerdes L, Iwobi A, Busch U, Pecoraro S. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomolecular Detection and Quantification, 2016, 7:9-20.
    [27] Wang C, Ding Q, Plant P, Basheer M, Yang CC, Tawedrous E, Krizova A, Boulos C, Farag M, Cheng YF, Yousef GM. Droplet digital PCR improves urinary exosomal miRNA detection compared to real-time PCR. Clinical Biochemistry, 2019, 67:54-59.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖建龙,张斯童,孙晓仲,陈光. 高效组成型分泌表达木素过氧化物酶酿酒酵母工程菌的构建[J]. 微生物学报, 2020, 60(5): 951-962

复制
分享
文章指标
  • 点击次数:729
  • 下载次数: 1337
  • HTML阅读次数: 3085
  • 引用次数: 0
历史
  • 收稿日期:2019-08-14
  • 最后修改日期:2019-11-03
  • 在线发布日期: 2020-05-11
文章二维码