田菁根际促生菌的筛选及其促生耐盐效果
作者:
基金项目:

NSFC-山东省联合基金重点项目(U1806206);山东省重点研发计划(2017GSF17129);边际土地产能效益扩增机理与藏粮于地技术模式(KFZD-SW-112)


Screening of plant growth promoting and salt tolerant rhizobacteria in Sesbania cannabina
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]为探究盐生植物田菁及其根际功能微生物改良盐碱地的效果,本研究从黄河三角洲盐碱区田菁根际土壤中分离促生菌,并明确其耐盐促生效果。[方法]采用选择培养方法从田菁根际土壤中分离固氮菌、解磷菌以及解钾菌,并进行16S rRNA分子生物学鉴定。之后对菌株的耐盐及促生特性进行测定,筛选性状优良菌株进行玉米促生作用研究。[结果]共分离得到105株根际促生菌,其中N102兼具多种促生特性且耐盐性达15%。田菁种子发芽试验表明,N102可显著提高田菁发芽率(47%,P<0.05)、芽长(48.5%,P<0.05)和根长(60%,P<0.05);玉米盆栽试验结果表明,N102对盐胁迫下玉米的株高、根长、叶绿素含量、地上部干重以及根干重具有显著的促进作用。经系统发育分析,N102与Enterobacter soli ATCC BAA-2102(NR117547)序列相似度为99.30%,鉴定属于Enterobacter属。[结论]菌株N102具有多种植物促生耐盐特性,具有开发成有效促进盐碱地作物生长的微生物肥的良好前景。

    Abstract:

    [Objective] To explore the effects of halophyte Sesbania cannabina and its rhizosphere functional microorganisms on ameliorating saline alkali soil, we isolated and identified the plant growth promoting rhizobacteria (PGPR) of S. cannabina grew in saline-alkali soil of Yellow River Delta, and further studied the growth-promoting and salt-tolerant characteristics of PGPRs. [Methods] Nitrogen-fixing, phosphorus-dissolving and potassium-dissolving bacteria were isolated from rhizosphere soil of S. cannabina by selective culture and identified by 16S rRNA molecular biology. Traits of plant growth-promoting and salt tolerance of the strains were determined and analyzed, and strains with excellent traits were selected to further study their growth promotion effect on corn. [Results] We totally obtained 105 rhizosphere isolates, of which N102 had growth-promoting and salt tolerance activities. As shown by seed germination test, N102 could significantly increase the germination rate (47%, P<0.05), bud length (48.5%, P<0.05), root length (60%, P<0.05) of S. cannabina. The pot experiment also shows that N102 could significantly improve plant height, root length, shoot dry weight, root dry weight and chlorophyll content of corn under salt stress. According to phylogenetic analysis, the similarity between N102 and Enterobacter soli ATCC BAA-2102 (NR117547) sequence was 99.30%, this it was identified as Enterobacter genus.[Conclusion] Strain N102 has high salt-tolerant and plant growth-promoting characteristics, promising to develop as microbial inoculants or microbial fertilizers that can effectively promote the growth of crops in saline-alkali soils.

    参考文献
    [1] Dong HY, Zhu ZL, Li XH, Yang LP, Zhang Z. Analysis on distribution, utilization status and governance effect of saline-alkali soil in Shandong province. Shandong Agricultural Sciences, 2017, 49(5):134-139. (in Chinese)董红云, 朱振林, 李新华, 杨丽萍, 张正. 山东省盐碱地分布、改良利用现状与治理成效潜力分析. 山东农业科学, 2017, 49(5):134-139.
    [2] Li Y, Tao J, Chao JL, Zhang H, Gu W. Research progress of improving measures of "raised field-shallow pool" for coastal saline-alkaline land. Agricultural Research in the Arid Areas, 2014, 32(5):154-160, 167. (in Chinese)李颖, 陶军, 钞锦龙, 张化, 顾卫. 滨海盐碱地"台田-浅池"改良措施的研究进展. 干旱地区农业研究, 2014, 32(5):154-160, 167.
    [3] 侯贺贺. 黄河三角洲盐碱地生物措施改良效果研究. 山东农业大学硕士学位论文, 2014.
    [4] Song JR, Yang J, Wang YM, Song CJ. Exploration of the reason and improvement measures of saline-alkali soil in the Yellow River delta. Journal of Anhui Agricultural Sciences, 2017, 45(27):95-97, 234. (in Chinese)宋静茹, 杨江, 王艳明, 宋常吉. 黄河三角洲盐碱地形成的原因及改良措施探讨. 安徽农业科学, 2017, 45(27):95-97, 234.
    [5] Zhang LB, Guo XX, Chang SL. The salt tolerance of Tianjing and its improvement effect on coastal saline soil. Jiangsu Agricultural Sciences, 2012, 40(2):310-312. (in Chinese)张立宾, 郭新霞, 常尚连. 田菁的耐盐能力及其对滨海盐渍土的改良效果. 江苏农业科学, 2012, 40(2):310-312.
    [6] Kloepper JW, Schroth MN. Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology, 1981, 71(10):1020-1024.
    [7] Kumar P, Dubey RC, Maheshwari DK. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 2012, 167(8):493-499.
    [8] Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A. Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environmental Science and Pollution Research, 2018, 25(23):23236-23250.
    [9] Bano A, Fatima M. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils, 2009, 45(4):405-413.
    [10] Chang P, Gerhardt KE, Huang XD, Yu XM, Glick BR, Gerwing PD, Greenberg BM. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil:implications for phytoremediation of saline soils. International Journal of Phytoremediation, 2014, 16(11):1133-1147.
    [11] Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y. Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie, 2001, 21(6/7):553-560.
    [12] Woitke M, Junge H, Schnitzler WH. Bacillus subtilis as growth promotor in hydroponically grown tomatoes under saline conditions//Cantliffe DJ, Stoffella PJ, Shaw NL. VII International Symposium on Protected Cultivation in Mild Winter Climates:Production, Pest Management and Global Competition. Kissimmee, Florida, USA:ISHS, 2004:363-369.
    [13] 张晶晶. 新疆核桃根际促生菌的筛选及鉴定. 新疆农业大学硕士学位论文, 2015.
    [14] Guo Y, Yang P, Zhang DY, Liu YY, Ma LJ, Bu N. Screening, identification and growth-promoting effect of multi-function rhizosphere growth-promoting strain of wild soybean. Biotechnology Bulletin, 2018, 34(10):108-115. (in Chinese)郭英, 杨萍, 张丹雨, 刘莹莹, 马莲菊, 卜宁. 野大豆多功能根际促生菌的筛选鉴定和促生效果研究. 生物技术通报, 2018, 34(10):108-115.
    [15] Tan K, Wu ZY, Gu YL, Zhou J, Yang YL, Wu HF. Screening of a high potassium-releasing microbial strain. Journal of Liupanshui Normal University, 2018, 30(3):52-55. (in Chinese)谭康, 吴泽英, 顾永丽, 周娟, 杨友联, 吴汉福. 一株高效解钾菌的筛选. 六盘水师范学院学报, 2018, 30(3):52-55.
    [16] Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160(1):47-56.
    [17] Dworkin M, Foster JW. Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 1958, 75(5):592-603.
    [18] Shokri D, Emtiazi G. Indole-3-Acetic Acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Current Microbiology, 2010, 61(3):217-225.
    [19] Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 1950, 347:1-32.
    [20] Rodrı́guez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 1999, 17(4/5):319-339.
    [21] 陈华癸. 微生物学实验. 北京:农业出版社, 1962.
    [22] Singh RP, Jha PN. The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of Wheat (Triticum aestivum L.). PLoS One, 2016, 11(6):e0155026.
    [23] 杨杉杉. 耐盐植物根际促生细菌筛选及其对盐胁迫小麦幼苗的促生效应研究. 内蒙古农业大学硕士学位论文, 2018.
    [24] Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecules and Cells, 2014, 37(2):109-117.
    [25] Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, AL-Harrasi A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants:a review. Microbiological Research, 2018, 209:21-32.
    [26] Kumar A, Verma JP. Does plant-Microbe interaction confer stress tolerance in plants:a review? Microbiological Research, 2018, 207:41-52.
    [27] Sen S, Ghosh D, Mohapatra S. Modulation of polyamine biosynthesis in Arabidopsis thaliana by a drought mitigating Pseudomonas putida strain. Plant Physiology and Biochemistry, 2018, 129:180-188.
    [28] Etesami H, Beattie GA. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology, 2018, 9:148.
    [29] Komaresofla BR, Alikhani HA, Etesami H, Khoshkholgh-Sima NA. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co-inoculation with endophytic and rhizosphere bacteria. Applied Soil Ecology, 2019, 138:160-170.
    [30] Qin S, Feng WW, Zhang YJ, Wang TT, Xiong YW, Xing K. Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Applied and Environmental Microbiology, 2018, 84(19):e01533-18.
    [31] Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 2018, 206:131-140.
    [32] Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture:action mechan. New York:Springer, 2013:25-87.
    [50] Shrivastava P, Kumar R. Soil salinity:a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 2015, 22(2):123-131.
    [51] Szymańska S, Borruso L, Lorenzo B, Brusetti L, Hulisz P, Furtado B, Hrynkiewicz K. Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity. Environmental Science and Pollution Research, 2018, 25(25):25420-25431.
    [52] Singh RP, Jha PN. The PGPR Stenotrophomonas maltophilia SBP-9 augments Resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology, 2017, 8:1945.nd applications. Scientifica, 2012, 2012:963401.
    [37] Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 2014, 169(1):30-39.
    [38] Rajkumar M, Ae N, Prasad MNV, Freitas H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 2010, 28(3):142-149.
    [39] Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 2014, 32(2):429-448.
    [40] Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology, 2018, 169(1):20-32.
    [41] Wang QQ, Feng L, Li Y, Chu GX, Sun YF. Screening and identification of salt-tolerant promoting bacteria of the rhizosphere of Suaeda dendroides in Xinjiang. Microbiology China, 2019, 46(10):2569-2578. (in Chinese)王琦琦, 冯丽, 李杨, 褚贵新, 孙燕飞. 新疆木碱蓬(Suaeda dendroides)根际耐盐促生细菌的筛选及鉴定. 微生物学通报, 2019, 46(10):2569-2578.
    [42] Gupta P, Kumar V, Usmani Z, Rani R, Chandra A, Gupta VK. A comparative evaluation towards the potential of Klebsiella sp. and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.). Journal of Hazardous Materials, 2019, 377:391-398.
    [43] Ji WX, Leng X, Jin ZX, Li HL. Plant growth promoting bacteria increases biomass, effective constituent, and modifies rhizosphere bacterial communities of Panax ginseng. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2019, 69(2):135-146.
    [44] Bhise KK, Bhagwat PK, Dandge PB. Plant growth-promoting characteristics of salt tolerant Enterobacter cloacae Strain KBPD and its efficacy in amelioration of salt stress in Vigna radiata L. Journal of Plant Growth Regulation, 2017, 36(1):215-226.
    [45] Habib SH, Kausar H, Saud HM. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes. BioMed Research International, 2016, 2016:6284547.
    [46] Akram MS, Shahid M, Tariq M, Azeem M, Javed MT, Saleem S, Riaz S. Deciphering Staphylococcus sciuri SAT-17 mediated anti-oxidative defense mechanisms and growth modulations in salt stressed maize (Zea mays L.). Frontiers in Microbiology, 2016, 7:867.
    [47] Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W. Plant growth promoting bacteria confer salt tolerance in Vigna radiate by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regulation, 2016, 80(1):23-36.
    [48] Hmaeid N, Wali M, Metoui-Ben Mahmoud O, Pueyo JJ, Ghnaya T, Abdelly C. Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Applied Soil Ecology, 2019, 133:104-113.
    [49] Hasanuzzaman M, Nahar K, Fujita M. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages//Ahmad P, Azooz MM, Prasad MNV. Ecophysiology and Responses of Plants Under Salt Stress
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王艳霞,解志红,张蕾,常大勇. 田菁根际促生菌的筛选及其促生耐盐效果[J]. 微生物学报, 2020, 60(5): 1023-1035

复制
分享
文章指标
  • 点击次数:965
  • 下载次数: 1511
  • HTML阅读次数: 4080
  • 引用次数: 0
历史
  • 收稿日期:2019-10-08
  • 最后修改日期:2019-11-21
  • 在线发布日期: 2020-05-11
文章二维码