单细胞拉曼光谱在微生物研究中的应用
作者:
基金项目:

国家自然科学基金(41673073,41776137,41530105,91428308,91851210);科技部重大研发计划(2016YFA0601101)


Advances in the application of Raman microspectroscopy in microbe research
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    拉曼显微光谱是一种能够提供0.5-1.0 μm空间分辨率的单个微生物细胞内化学结构信息的研究技术。近几年来,拉曼显微光谱被越来越多地应用于微生物单细胞的研究中,它可以快速无损地检测微生物细胞内的特征化学组分。典型的单个微生物细胞的拉曼光谱包含核酸、蛋白质、碳水化合物、脂质和色素(例如类胡萝卜素)等信息,这些信息能够表征微生物细胞的基因型、表型和生理状态。所以单细胞拉曼显微光谱是一种可用于区分微生物样品的“全生物指纹”技术,它可用于研究单个微生物细胞生命阶段的转变、鉴定微生物单细胞中的色素及其他化合物的含量变化等。本文综述了目前拉曼显微光谱在微生物单细胞研究上的应用,主要包括与稳定同位素标记(stable isotope probing,SIP)、拉曼成像、光谱分类和细胞分选技术结合来探究微生物单细胞对物质吸收后特征峰的变化、推导物质循环过程、进行微生物分类鉴定和探索基因型与表型的关系。拉曼显微光谱作为微生物单细胞研究的手段之一,在代谢过程的研究、活细胞分选和细胞对物质的利用上具有广泛的应用前景。

    Abstract:

    Raman microscopy is a technique that provides information on the chemical structure of materials within a spatial resolution of 0.5 to 1 μm. In recent years, Raman microspectroscopy, which can quickly and non-destructively detect characteristic chemical components in single cells, has been increasingly applied to microbiology. The Raman spectrum of a typical microbial cell contains information on nucleic acids, proteins, carbohydrates, lipids, and pigments (e.g. carotenoids) that characterize the genotype, phenotype, and physiological state of the microbial cells. Therefore, single-cell Raman microscopy is a “full bio-fingerprint” technique that can be used to distinguish different microbes. Raman microspectroscopy can be used to study the transformation of individual microbial cell life stages, identify changes in pigments and other compounds in single microbial cells. This paper reviews the current applications of Raman microspectroscopy on the study of microbiology at single cell level. Its combination with stable isotope probing (SIP), Raman imaging, spectral classification and cell sorting techniques that used to explore the microbial classifications and the relationships between genotypes and phenotypes, were also discussed in this paper. Collectively, Raman microspectroscopy is a promising method in the studies of cell sorting and metabolic analysis at single cell level.

    参考文献
    [1] Wang Y, Huang WE, Cui L, Wagner M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Current Opinion in Biotechnology, 2016, 41:34-42.
    [2] 许以明. 拉曼光谱及其在结构生物学中的应用. 北京:化学工业出版社, 2005:4.
    [3] Wagner M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annual Review of Microbiology, 2009, 63:411-429.
    [4] Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS. Raman microscopic analysis of single microbial cells. Analytical Chemistry, 2004, 76(15):4452-4458.
    [5] Delhaye M, Dhamelincourt P. Raman microprobe and microscope with laser excitation. Journal of Raman Spectroscopy, 1975, 3(1):33-43.
    [6] Dhamelincour P, Wallart F, Leclercq M, Nguyen AT, Landon DO. Laser Raman molecular microprobe (MOLE). Analytical Chemistry, 1979, 51(3):414A-420A.
    [7] Andersen ME, Muggli RZ. Microscopical techniques in the use of the molecular optics laser examiner Raman microprobe. Analytical Chemistry, 1981, 53(12):1772-1777.
    [8] Adar F. Developments of the Raman microprobe-instrumentation and applications. Microchemical Journal, 1988, 38(1):50-79.
    [9] Puppels GJ, De Mul FFM, Otto C, Greve J, Robert-Nicoud M, Arndt-Jovin DJ, Jovin TM. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature, 1990, 347(6290):301-303.
    [10] Schuster KC, Reese I, Urlaub E, Gapes JR, Lendl B. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Analytical Chemistry, 2000, 72(22):5529-5534.
    [11] Huang WE, Ward AD, Whiteley AS. Raman tweezers sorting of single microbial cells. Environmental Microbiology Reports, 2009, 1(1):44-49.
    [12] Haider S, Wagner M, Schmid MC, Sixt BS, Christian JG, Häcker G, Pichler P, Mechtler K, Müller A, Baranyi C, Toenshoff ER, Montanaro J, Horn M. Raman microspectroscopy reveals long-term extracellular activity of chlamydiae. Molecular Microbiology, 2010, 77(3):687-700.
    [13] Li MQ, Huang WE, Gibson CM, Fowler PW, Jousset A. Stable isotope probing and Raman spectroscopy for monitoring carbon flow in a food chain and revealing metabolic pathway. Analytical Chemistry, 2013, 85(3):1642-1649.
    [14] van Manen HJ, Kraan YM, Roos D, Otto C. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(29):10159-10164.
    [15] de Gelder J, de Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy, 2007, 38(9):1133-1147.
    [16] Schuster KC, Urlaub E, Gapes JR. Single-cell analysis of bacteria by Raman microscopy:spectral information on the chemical composition of cells and on the heterogeneity in a culture. Journal of Microbiological Methods, 2000, 42(1):29-38.
    [17] Naumann D. Ft-infrared and Ft-Raman spectroscopy in biomedical research. Applied Spectroscopy Reviews, 2001, 36(2/3):239-298.
    [18] Tao YF, Wang Y, Huang S, Zhu PF, Huang WE, Ling JQ, Xu J. Metabolic-activity-based assessment of antimicrobial effects by D2O-labeled single-cell Raman microspectroscopy. Analytical Chemistry, 2017, 89(7):4108-4115.
    [19] Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M. Raman-FISH:combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environmental Microbiology, 2007, 9(8):1878-1889.
    [20] Noothalapati H, Shigeto S. Exploring metabolic pathways in vivo by a combined approach of mixed stable isotope-labeled Raman microspectroscopy and multivariate curve resolution analysis. Analytical Chemistry, 2014, 86(15):7828-7834.
    [21] Huang WE, Ferguson A, Singer AC, Lawson K, Thompson IP, Kalin RM, Larkin MJ, Bailey MJ, Whiteley AS. Resolving genetic functions within microbial populations:in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization. Applied and Environmental Microbiology, 2009, 75(1):234-241.
    [22] Kubryk P, Kölschbach JS, Marozava S, Lueders T, Meckenstock RU, Niessner R, Ivleva NP. Exploring the potential of stable isotope (resonance) Raman microspectroscopy and surface-enhanced Raman scattering for the analysis of microorganisms at singleAnalytical Chemistry, 2005, 77(14):4390-4397.
    [41] Xie CA, Chen D, Li YQ. Raman sorting and identification of single living micro-organisms with optical tweezers. Optics Letters, 2005, 30(14):1800-1802.
    [42] Kong LB, Zhang PF, Setlow P, Li YQ. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers. Analytical Chemistry, 2010, 82(9):3840-3847.
    [43] Peng LX, Chen D, Setlow P, Li YQ. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics. Analytical Chemistry, 2009, 81(10):4035-4042.
    [44] Zhang PF, Kong LB, Setlow P, Li YQ. Characterization of wet-heat inactivation of single spores of bacillus species by dual-trap Raman spectroscopy and elastic light scattering. Applied and Environmental Microbiology, 2010, 76(6):1796-1805.
    [45] Yu FB, Blainey PC, Schulz F, Woyke T, Horowitz MA, Quake SR. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. eLife, 2017, 6:e26580.
    [46] Camp CH, Yegnanarayanan S, Eftekhar AA, Adibi A. Label-free flow cytometry using multiplex coherent anti-Stokes Raman scattering (MCARS) for the analysis of biological specimens. Optics Letters, 2011, 36(12):2309-2311.
    [47] Walter A, März A, Schumacher W, Rösch P, Popp J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab on A Chip, 2011, 11(6):1013-1021.
    [48] Wang Y, Ji YT, Wharfe ES, Meadows RS, March P, Goodacre R, Xu J, Huang WE. Raman activated cell ejection for isolation of single cells. Analytical Chemistry, 2013, 85(22):10697-10701.
    [49] Song YZ, Yin HB, Huang WE. Raman activated cell sorting. Current Opinion ?n Chemical Biology, 2016, 33:1-8.
    [50] Song YZ, Kaster AK, Vollmers J, Song YQ, Davison PA, Frentrup M, Preston GM, Thompson IP, Murrell JC, Yin HB, Hunter CN, Huang WE. Single-cell genomics based on Raman sorting reveals novel carotenoid-containing bacteria in the Red Sea. Microbial Biotechnology, 2017, 10(1):125-137.
    [51] Jing XY, Gou HL, Gong YH, Su XL, Xu L, Ji YT, Song YZ, Thompson IP, Xu J, Huang WE. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. Environmental Microbiology, 2018, 20(6):2241-2255.
    [52] Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes:revealing an uncultured class of marine euryarchaeota. Science, 2012, 335(6068):587-590.
    [53] Martin-Cuadrado AB, Garcia-Heredia I, Moltó AG, López-Úbeda R, Kimes N, López-García P, Moreira D, Rodriguez-Valera F. A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum. The ISME Journal, 2015, 9(7):1619-1634.
    [54] Xie W, Luo HW, Murugapiran SK, Dodsworth JA, Chen SZ, Sun Y, Hedlund BP, Wang P, Fang HY, Deng MH, Zhang CL. Localized high abundance of Marine group II archaea in the subtropical Pearl River Estuary:implications for their niche adaptation. Environmental Microbiology, 2018, 20(2):734-754.
    [55] Haro-Moreno JM, López-Pérez M, de la Torre JR, Picazo A, Camacho A, Rodriguez-Valera F. Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. Microbiome, 2018, 6(1):128.
    [56] Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, Greenhalgh K, Jäger C, Baginska J, Wilmes P, Fleming RMT, Thiele I. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature Biotechnology, 2017, 35(1):81-89.
    [57] Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B, Labonté JM, Becraft ED, Brown JM, Pachiadaki MG, Povilaitis T, Thompson BP, Mascena CJ, Bellows WK, Lubys A. Author correction:improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nature Communications, 2017, 8(1):2134.
    [58] Yao GQ, Yu J, Hou QC, Hui WY, Liu WJ, Kwok LY, Menghe B, Sun TS, Zhang HP, Zhang WY. A perspective study of koumiss microbiome by metagenomics analysis based on single-cell amplification technique. Frontiers in Microbiology, 2017, 8:165.
    [59] Xu J, Ma B, Su XQ, Huang S, Xu X, Zhou XD, Huang WE, Knight R. Emerging trends for microbiome analysis:from single-cell functional imaging to microbiome big data. Engineering, 2017, 3(1):66-70.
    [60] Cui L, Yang K, Zhou GW, Huang WE, Zhu YG. Surface- enhanced Raman spectroscopy combined with stable isotope probing to monitor nitrogen assimilation at both bulk and single-cell level. Analytical Chemistry, 2017, 89(11):5793-5800.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘聪,谢伟,何林,张传伦. 单细胞拉曼光谱在微生物研究中的应用[J]. 微生物学报, 2020, 60(6): 1051-1062

复制
分享
文章指标
  • 点击次数:1356
  • 下载次数: 2175
  • HTML阅读次数: 6746
  • 引用次数: 0
历史
  • 收稿日期:2019-06-17
  • 最后修改日期:2019-08-17
  • 在线发布日期: 2020-06-10
文章二维码