海洋氮循环过程及基于基因组代谢网络模型的预测
作者:
基金项目:

国家重点研发计划(2018YFA0901401);中国科学院国际合作项目(153D31KYSB20170121);国家自然科学基金(21908239)


Marine nitrogen cycle and prediction based on genome-scale metabolic network model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [99]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    海洋氮循环在地球元素循环中充当着必不可少的角色。海洋氮循环是由一系列氧化还原反应构成的生物化学过程。固氮作用和氮同化作用为生态系统提供了生物可用氮(铵盐)。硝化作用可进一步将铵盐氧化为硝酸盐,硝酸盐又可以通过反硝化作用转化为氮气。整个氮循环实现了海洋中不同含氮无机盐间的转换。微生物是海洋氮循环的重要驱动者,海洋氮循环的研究可以帮助理解海洋生物与地球环境相互作用及协同演化的机制,从而更好地保护地球生态环境。随着氮循环关键微生物基因组尺度代谢网络模型的发表,研究者可以利用代谢网络模型来研究不同氮循环过程的效率、环境因子对氮循环过程的影响以及解析氮循环及生物网络的内在机理等,从而帮助人们更深入地研究海洋氮转化机制。本文主要综述了海洋氮循环过程中各个转化过程的主要微生物,以及基因组尺度代谢网络模型在分析氮循环中的应用。

    Abstract:

    The marine nitrogen cycling is one major component in Earth’s element cycle. The marine nitrogen cycling is a biochemical process composed of a series of redox reactions. Nitrogen fixation and nitrogen assimilation supplies critical bioavailable nitrogen (ammonium) to ecosystems. Nitrification can further convert ammonium into nitrates, while denitrification can convert nitrate into nitrogen. Different nitrogen forms are converted through the nitrogen cycle in the ocean. Studying marine nitrogen cycling could help understand the mechanism of interaction and co-evolution between marine organisms and Earth environment. It may also better protect the Earth’s ecological environment. By employing the published genome-scale metabolic network models based on key microorganisms involved in nitrogen cycling, researchers can study the efficiency of different nitrogen cycle processes and their influencing environmental factors, and disclose the mechanism of the nitrogen cycle and biological network, so as to help further study the mechanism of marine nitrogen conversion. This article mainly reviews the main microorganisms involved in each transformation process in the marine nitrogen cycle and applications of genome-scale metabolic network models in the analysis of the nitrogen cycle.

    参考文献
    [1] Huang XF, Dong JD, Zhang YY, Ling J, Chen L. Relationships between marine nitrogen-fixing microorganisms and environmental factors:a review. Chinese Journal of Ecology, 2012, 31(4):1028-1033. (in Chinese)黄小芳, 董俊德, 张燕英, 凌娟, 陈蕾. 海洋固氮微生物与环境因子关系综述. 生态学杂志, 2012, 31(4):1028-1033.
    [2] Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5):263-276.
    [3] Liu Q, Mi TZ, Zhen Y, Wang HL, Yu ZG. Description of carbon fixation pathway based on Skeletonema marinoi transcriptome. Chinese Science Bulletin, 2016, 61(22):2483-2493. (in Chinese)刘乾, 米铁柱, 甄毓, 王华龙, 于志刚. 基于玛氏骨条藻(Skeletonema marinoi)转录组的碳固定代谢途径分析. 科学通报, 2016, 61(22):2483-2493.
    [4] Capone DG, Bronk DA, Mulholland MR, Carpenter EJ. Nitrogen in the marine environment. 2nd ed. Amsterdam:Elsevier, 2008.
    [5] Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nature Biotechnology, 2010, 28(3):245-248.
    [6] Aderem A. Systems biology:its practice and challenges. Cell, 2005, 121(4):511-513.
    [7] Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Research in Microbiology, 2003, 154(3):157-164.
    [8] Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B:Biological Sciences, 2013, 368(1621):20130164.
    [9] Sohm JA, Webb EA, Capone DG. Emerging patterns of marine nitrogen fixation. Nature Reviews Microbiology, 2011, 9(7):499-508.
    [10] Gardner JJ, Boyle NR. The use of genome-scale metabolic network reconstruction to predict fluxes and equilibrium composition of N-fixing versus C-fixing cells in a diazotrophic cyanobacterium, Trichodesmium erythraeum. BMC Systems Biology, 2017, 11:4.
    [11] Mahaffey C, Michaels AF, Capone DG. The conundrum of marine N2 fixation. American Journal of Science, 2005, 305(6/8):546-595.
    [12] Glibert PM, Bronk DA. Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria, Trichodesmium spp. Applied and Environmental Microbiology, 1994, 60(11):3996-4000.
    [13] Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, Lehnen N, Fuchs BM, Lavik G, Schmitz RA, LaRoche J, Kuypers MM. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nature Microbiology, 2016, 1(11):16163.
    [14] Harding K, Turk-Kubo KA, Sipler RE, Mills MM, Bronk DA, Zehr JP. Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52):13371-13375.
    [15] Zhang R, Chen M. Advances in marine biological nitrogen fixation studies. Journal of Oceanography in Taiwan Strait, 2010, 29(3):428-433. (in Chinese)张润, 陈敏. 海洋生物固氮作用研究进展. 台湾海峡, 2010, 29(3):428-433.
    [16] Babaei P, Marashi SA, Asad S. Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501. Molecular BioSystems, 2015, 11(11):3022-3032.
    [17] Zhang T, Yan YL, He S, Ping SZ, Alam KM, Han YL, Liu XD, Lu W, Zhang W, Chen M, Xiang WS, Wang XJ, Lin M. Involvement of the ammonium transporter AmtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501. Research in Microbiology, 2012, 163(5):332-339.
    [18] Goyal N, Widiastuti H, Karimi IA, Zhou Z. A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. Molecular BioSystems, 2014, 10(5):1043-1054.
    [19] Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, McIlvin MR, Gale J, Fu FX. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nature Communications, 2015, 6:8155.
    [20] Levitan O, Rosenberg G, Setlik I, Setlikova E, Grigel J, Klepetar J, Prasil O, Berman-Frank I. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Global Change Biology, 2007, 13(2):531-538.
    [21] Yan YL, Ping SZ, Peng JP, Han YL, Li L, Yang J, Dou YT, Li Y, Fan HL, Fan Y, Li DH, Zhan YH, Chen M, Lu W, Zhang W, Cheng Q, Jin Q, Lin M. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501. BMC Genomics, 2010, 11:11.
    [22] Zhang YY, Dong JD, Zhang S, Wang YS, Wang HK, Huang LM. Studies on nitrogen fixation physiology of marine cyanobacteria Calothrix sp. strain MCT1 and Lyngbya sp. strain MCT6. Journal of Tropical Oceanography, 2006, 25(4):46-50. (in Chinese)张燕英, 董俊德, 张偲, 王友绍, 王汉奎, 黄良民. 海洋固氮蓝藻Calothrix sp. 与Lyngbya sp. 固氮生理的研究. 热带海洋学报, 2006, 25(4):46-50.
    [23] Resendis-Antonio O, Reed JL, Encarnación S, Collado-Vides J, Palsson BØ. Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Computational Biology, 2007, 3(10):e192.
    [24] Zhao HS, Li M, Fang KC, Chen WF, Wang J. In silico insights into the symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic reconstruction. PLoS One, 2012, 7(2):e31287.
    [25] Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damsté JSS. Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33):12317-12322.
    [26] Ward BB. Significance of anaerobic ammonium oxidation in the ocean. Trends in Microbiology, 2003, 11(9):408-410.
    [27] Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, Ingalls AE, Moffett JW, Armbrust EV, Stahl DA. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34):12504-12509.
    [28] Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH, Garcia JAL, Volland JM, Srivastava A, Schleper C, Herndl GJ. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. The ISME Journal, 2016, 10(5):1051-1063.
    [29] Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 2009, 461(7266):976-979.
    [30] Kozlowski JA, Stieglmeier M, Schleper C, Klotz MG, Stein LY. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. The ISME Journal, 2016, 10(8):1836-1845.
    [31] Poughon L, Dussap CG, Gros JB. Energy model and metabolic flux analysis for autotrophic nitrifiers. Biotechnology and Bioengineering, 2001, 72(4):416-433.
    [32] Schleper C, Nicol GW. Ammonia-oxidising archaea-physiology, ecology and evolution. Advances in Microbial Physiology, 2010, 57:1-41.
    [33] Stahl DA, de la Torre JR. Physiology and diversity of ammonia-oxidizing archaea. Annual Review of Microbiology, 2012, 66:83-101.
    [34] Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir A, Hemp J, Hügler M, Karr EA, Könneke M, Shin M, Lawton TJ, Lowe T, Martens-Habbena W, Sayavedra-Soto LA, Lang D, Sievert SM, Rosenzweig AC, Manning G, Stahl DA. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19):8818-8823.
    [35] Li FR, Xie W, Yuan QQ, Luo H, Li PS, Chen T, Zhao XM, Wang ZW, Ma HW. Genome-scale metabolic model analysis indicates low energy production efficiency in marine ammonia-oxidizing archaea. AMB Express, 2018, 8(1):106.
    [36] Hollocher TC, Kumar S, Nicholas DJ. Respiration-dependent proton translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis during inorganic oxidations. Journal of Bacteriology, 1982, 149(3):1013-1020.
    [37] Vuillemin A, Wankel SD, Coskun ÖK, Magritsch T, Vargas S, Estes ER, Spivack AJ, Smith DC, Pockalny R, Murray RW, D'Hondt S, Orsi WD. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Science Advances, 2019, 5(6):eaaw4108.
    [38] Aggarwal S, Lyn CP, Karimi IA. Improved strains for biological treatment of wastewater. Computer Aided Chemical Engineering, 2012, 31:895-899.
    [39] 李斐然. 氨氧化微生物基因组尺度代谢网络模型构建及分析. 天津大学硕士学位论文, 2017.
    [40] Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WIC, Damsté JSS, Le Paslier D, Muyzer G, Wagner M, van Loosdrecht MCM, Daims H. Nitrification expanded:discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. The ISME Journal, 2012, 6(12):2245-2256.
    [41] Füssel J, Lam P, Lavik G, Jensen MM, Holtappels M, Günter M, Kuypers MMM. Nitrite oxidation in the Namibian oxygen minimum zone. The ISME Journal, 2012, 6(6):1200-1209.
    [42] Lücker S, Nowka B, Rattei T, Spieck E, Daims H. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Frontiers in Microbiology, 2013, 4:27.
    [43] Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M. Complete nitrification by Nitrospira bacteria. Nature, 2015, 528(7583):504-509.
    [44] van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, den Camp HJMO, Kartal B, Jetten MSM, Lücker S. Complete nitrification by a single microorganism. Nature, 2015, 528(7583):555-559.
    [45] Daims H, Lücker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology, 2016, 24(9):699-712.
    [46] Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein LY, Daims H, Wagner M. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 2017, 549(7671):269-272.
    [47] Hu HW, He JZ. Comammox-a newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 2017, 17(12):2709-2717.
    [48] 刘帅. 典型生境中氨氧化古菌(AOA)和氨氧化细菌(AOB)的微生物生态学研究. 浙江大学博士学位论文, 2015.
    [49] Li TT, Zhang YK, Cao TH, Liu QH. Research progress of control factors of partial bio-nitrification bacterium group. Technology of Water Treatment, 2013, 39(1):19-23. (in Chinese)李婷婷, 张宇坤, 曹天昊, 刘泉宏. 短程生物脱氮过程菌群调控影响因素研究进展. 水处理技术, 2013, 39(1):19-23.
    [50] 余晨笛. 长江河口沉积物全程氨氧化微生物的富集及多样性分析. 华东师范大学硕士学位论文, 2018.
    [51] Gong J, Song YJ, Zhang XL. Phylogenetic and functional diversity of nitrogen cycling microbes in coastal sediments. Biodiversity Science, 2013, 21(4):433-444. (in Chinese)龚骏, 宋延静, 张晓黎. 海岸带沉积物中氮循环功能微生物多样性. 生物多样性, 2013, 21(4):433-444.
    [52] Kartal B, Rattray J, van Niftrik LA, van de Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damsté JS, Jetten MSM, Strous M. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 2007, 30(1):39-49.
    [53] Kartal B, Kuypers MMM, Lavik G, Schalk J, Op den Camp HJ, Jetten MSM, Strous M. Anammox bacteria disguised as denitrifiers:nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology, 2007, 9(3):635-642.
    [54] 卜翠娜. 异化硝酸盐还原菌(DNRA)的环境分布及富集培养研究. 山东大学硕士学位论文, 2018.
    [55] Giblin AE, Tobias CR, Song B, Weston N, Banta GT, Rivera-Monroy VH. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography, 2013, 26(3):124-131.
    [56] 韦宗敏. 微好氧环境中硝酸盐异化还原成铵的影响研究. 华南理工大学硕士学位论文, 2012.
    [57] Kraft B, Tegetmeyer HE, Sharma R, Klotz MG, Ferdelman TG, Hettich RL, Geelhoed JS, Strous M. The environmental controls that govern the end product of bacterial nitrate respiration. Science, 2014, 345(6197):676-679.
    [58] Wang W, Cai ZC, Zhong WH, Wang GX. Research advances in aerobic denitrifiers. Chinese Journal of Applied Ecology, 2007, 18(11):2618-2625. (in Chinese)王薇蔡祖聪, 钟文辉, 王国祥. 好氧反硝化菌的研究进展. 应用生态学报, 2007, 18(11):2618-2625.
    [59] Fan JF, Chen JY, Chen LG, Guan DM. Research on denitrifying bacteria quantification and diversity in Liaohe Estuary sediments. Acta Oceanologica Sinica, 2011, 33(3):94-102. (in Chinese)樊景凤, 陈佳莹, 陈立广, 关道明. 辽河口沉积物反硝化细菌数量及多样性的研究. 海洋学报, 2011, 33(3):94-102.
    [60] Codispoti LA. Interesting times for marine N2O. Science, 2010, 327(5971):1339-1340.
    [61] Tiedje JM. Ecology of denitrification and dissimilatory nitrate reduction to ammonium//Zehnder AJB. Biology of Anaerobic Microorganisms. New York:John Wiley and Sons, 1988:179-244.
    [62] Bristow LA, Callbeck CM, Larsen M, Altabet MA, Dekaezemacker J, Forth M, Gauns M, Glud RN, Kuypers MMM, Lavik G, Milucka J, Naqvi SWA, Pratihary A, Revsbech NP, Thamdrup B, Treusch AH, Canfield DE. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nature Geoscience, 2017, 10(1):24-29.
    [63] Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, Jørgensen BB, Jetten MSM. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(18):6478-6483.
    [64] Middelburg JJ, Soetaert K, Herman PMJ, Heip CHR. Denitrification in marine sediments:a model study. Global Biogeochemical Cycles, 1996, 10(4):661-673.
    [65] Codispoti LA. An oceanic fixed nitrogen sink exceeding 400 Tg N a−1 vs the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences, 2007, 4(2):233-253.
    [66] Gruber N, Sarmiento JL. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles, 1997, 11(2):235-266.
    [67] Gruber N. The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations//Follows M, Oguz T. The Ocean Carbon Cycle and Climate. Dordrecht:Springer, 2004:97-148.
    [68] DeVries T, Deutsch C, Primeau F, Chang B, Devol A. Global rates of water-column denitrification derived from nitrogen gas measurements. Nature Geoscience, 2012, 5(8):547-550.
    [69] Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176):293-296.
    [70] Oberhardt MA, Puchałka J, Fryer KE, Dos Santos VAM, Papin JA. Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. Journal of bacteriology, 2008, 190(8):2790-2803.
    [71] Rex R, Bill N, Schmidt-Hohagen K, Schomburg D. Swimming in light:a large-scale computational analysis of the metabolism of Dinoroseobacter shibae. PLoS Computational Biology, 2013, 9(10):e1003224.
    [72] Li WF, Zheng JJ, Zhang XP, Deng B. Progress in studies on denitrification enzymes and environmental impact factors. Acta Hydrobiologica Sinica, 2014, 38(1):166-170. (in Chinese)李卫芬, 郑佳佳, 张小平, 邓斌. 反硝化酶及其环境影响因子的研究进展. 水生生物学报, 2014, 38(1):166-170.
    [73] Patureau D, Bernet N, Delgenès JP, Moletta R. Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium. Applied Microbiology and Biotechnology, 2000, 54(4):535-542.
    [74] An J, Song ZF, Yang XL, Hu K, Lu HD, She LR. Characteristics of aerobic denitrifying strain YX-6 and identification. Journal of Fishery Sciences of China, 2010, 17(3):561-569. (in Chinese)安健, 宋增福, 杨先乐, 胡鲲, 路怀灯, 佘林荣. 好氧反硝化细菌YX-6特性及鉴定分析. 中国水产科学, 2010, 17(3):561-569.
    [75] Xu H, Zhang L, Shang JG, Dai JY, Fan CX. Denitrification and anammox on the sediment-water interface in the Meiliang Bay of Lake Taihu. Journal of Lake Sciences, 2009, 21(6):775-781. (in Chinese)徐徽, 张路, 商景阁, 代静玉, 范成新. 太湖梅梁湾水土界面反硝化和厌氧氨氧化. 湖泊科学, 2009, 21(6):775-781.
    [76] Kampschreur MJ, Kleerebezem R, Picioreanu C, Bakken L, Bergaust L, de Vries S, Jetten MSM, van Loosdrecht MCM. Metabolic modeling of denitrification in Agrobacterium tumefaciens:a tool to study inhibiting and activating compounds for the denitrification pathway. Frontiers in Microbiology, 2012, 3:370.
    [77] Risso C, Sun J, Zhuang K, Mahadevan R, DeBoy R, Ismail W, Shrivastava S, Huot H, Kothari S, Daugherty S, Bui O, Schilling CH, Lovley DR, Methé BA. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens. BMC Genomics, 2009, 10:447.
    [78] Peeters SH, van Niftrik L. Trending topics and open questions in anaerobic ammonium oxidation. Current Opinion in Chemical Biology, 2019, 49:45-52.
    [79] Stein LY, Klotz MG. The nitrogen cycle. Current Biology, 2016, 26(3):R94-R98.
    [80] Dalsgaard T, Thamdrup B, Canfield DE. Anaerobic ammonium oxidation (anammox) in the marine environment. Research in Microbiology, 2005, 156(4):457-464.
    [81] Huang PB, Jiao NZ, Feng J, Shu QL. Research progress on Planctomycetes' diversity and ecological function in marine environments. Microbiology China, 2014, 41(9):1891-1902. (in Chinese)黄佩蓓, 焦念志, 冯洁, 舒青龙. 海洋浮霉状菌多样性与生态学功能研究进展. 微生物学通报, 2014, 41(9):1891-1902.
    [82] Martin TS, Casciotti KL. Nitrogen and oxygen isotopic fractionation during microbial nitrite reduction. Limnology and Oceanography, 2016, 61(3):1134-1143.
    [83] Dalsgaard T, Thamdrup B, Farías L, Revsbech NP. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnology and Oceanography, 2012, 57(5):1331-1346.
    [84] Ward BB. How nitrogen is lost. Science, 2013, 341(6144):352-353.
    [85] Devol AH. Denitrification, anammox, and N2 production in marine sediments. Annual Review of Marine Science, 2015, 7:403-423.
    [86] Fu LL, Li SQ, Zhen Y, Mi TZ. Comparison study on the primers used for anammox bacterial molecular ecology research from marine sediments. Periodical of Ocean University of China, 2019, 49(9):77-88. (in Chinese)付璐璐, 李思琦, 甄毓, 米铁柱. 用于海洋沉积物中厌氧氨氧化细菌分子生态学研究的引物比较. 中国海洋大学学报, 2019, 49(9):77-88.
    [87] Clément JC, Shrestha J, Ehrenfeld JG, Jaffé PR. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biology and Biochemistry, 2005, 37(12):2323-2328.
    [88] Jiang Y, Xi BD, Li R, Li MX, Xu Z, Yang YN, Gao SB. Advances in Fe(III) bioreduction and its application prospect for groundwater remediation:a review. Frontiers of Environmental Science & Engineering, 2019, 13(6):89.
    [89] Chen X, Cui LF, Du B, Si YA. Study on influencing of temperature and pH to anaerobic ammonium oxidation microbial activity. Journal of Beijing Technology and Business University (Natural Science Edition), 2006, 24(3):5-8. (in Chinese)陈曦, 崔莉凤, 杜兵, 司亚安. 温度和pH值对厌氧氨氧化微生物活性的影响分析. 北京工商大学学报(自然科学版), 2006, 24(3):5-8.
    [90] Canion A, Kostka JE, Gihring TM, Huettel M, Van Beusekom JEE, Gao H, Lavik G, Kuypers MMM. Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude. Biogeosciences, 2014, 11(2):309-320.
    [91] Hamersley MR, Lavik G, Woebken D, Rattray JE, Lam P, Hopmans EC, Damsté JSS, Krüger S, Graco M, Gutiérrez D, Kuypers MMM. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnology and Oceanography, 2007, 52(3):923-933.
    [92] Daigger GT. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox. Water Environment Research, 2014, 86(3):204-209.
    [93] Dalsgaard T, Thamdrup B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Applied and Environmental Microbiology, 2002, 68(8):3802-3808.
    [94] Fu BB, Liu JW, Gao MH, Zhang XH. Progress in study on response of anammox bacterial species composition to environmental factors. Advances in Marine Science, 2014, 32(3):427-434. (in Chinese)富冰冰, 刘吉文, 高铭鸿, 张晓华. 厌氧氨氧化细菌物种组成对环境因子响应的研究进展. 海洋科学进展, 2014, 32(3):427-434.
    [95] Zhang DS, Liu ZS, Zhang HF, Wang XG, Wang CS. Diversity of anaerobic ammonium oxidizing bacteria in marine sediments from the Zhoushan Islands. Acta Ecologica Sinica, 2015, 35(19):6250-6258. (in Chinese)张东声, 刘镇盛, 张海峰, 王小谷, 王春生. 舟山群岛海域沉积物厌氧氨氧化细菌多样性. 生态学报, 2015, 35(19):6250-6258.
    [96] 石洪华, 丁德文, 郑伟. 海岸带复合生态系统评价、模拟与调控关键技术及其应用. 北京:海洋出版社, 2012.
    [97] Dejongh M, Formsma K, Boillot P, Gould J, Rycenga M, Best A. Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics, 2007, 8:139.
    [98] Agren R, Liu LM, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Computational Biology, 2013, 9(3):e1002980.
    [99] Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Research, 2018, 46(15):7542-7553.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张日钊,李斐然,袁倩倩,马红武. 海洋氮循环过程及基于基因组代谢网络模型的预测[J]. 微生物学报, 2020, 60(6): 1130-1147

复制
分享
文章指标
  • 点击次数:792
  • 下载次数: 1718
  • HTML阅读次数: 5029
  • 引用次数: 0
历史
  • 收稿日期:2020-01-04
  • 最后修改日期:2020-04-09
  • 在线发布日期: 2020-06-10
文章二维码