一株新的砷还原菌分离鉴定及其对天然矿物臭葱石的溶解作用
作者:
基金项目:

国家自然科学基金(41472257)


Isolation and identification of a novel As-reducing bacterium for the reductive dissolution of scorodite
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究江汉平原土著砷还原微生物如何介导臭葱石的溶解和释放过程,以及硝酸盐和硫酸盐对该过程的影响。[方法] 采集江汉平原高砷沉积物,利用多轮传代富集方法筛选出一株兼性厌氧砷还原菌;克隆其16S rRNA基因、砷还原酶基因(arsC)、硫代硫酸盐还原酶基因(phsA)、硝酸盐还原酶基因(nar)以获得其分类地位;分析该细菌的As(V)、NO3-、Fe(III)、S2O32-还原功能;利用microcosm技术分析该菌株催化臭葱石中不可溶砷和铁的溶解和释放作用及硝酸盐和硫酸盐对此过程的影响;采用X-射线衍射(XRD)和扫描电镜(SEM)等方法对细菌作用前后的矿物表面形貌进行分析。[结果] 16S rRNA基因测序结果表明该细菌为柠檬酸杆菌属(Citrobacter sp.),故命名为Citrobacter sp.A11;在Citrobacter sp.A11作用下,0.45 mmol/L As(V)在4 d内被还原成As(III),2.0 mmol/L S2O32-在6 d内被还原成S2-,1.0 mmol/L Fe(III)在3 d内被还原成Fe(II),140.0 mg/L NO3-在28 h内被还原成NO2-;经过28 d该细菌的催化作用使得体系中不可溶砷和铁的释放量分别为33.68 μmol/L、51.93 μmol/L;硫酸根的加入使得砷和铁的释放量分别增长了41.04%和34.30%,硝酸根的加入则使砷和铁释放量分别降低了35.07%和53.46%。XRD、SEM-EDS分析表明,细菌作用后的臭葱石表面形貌发生明显改变,并出现细小且分散的溶解性颗粒。[结论] 本次研究从江汉平原高砷沉积物中富集分离得到一株兼性厌氧砷还原细菌Citrobacter sp.A11,能有效还原As(V)、S2O32-、NO3-、Fe(III);砷还原细菌Citrobacter sp.A11能显著促进臭葱石中砷和铁的溶解和释放,硫酸根离子的存在会促进细菌介导臭葱石中固态砷、铁的释放,而硝酸根离子的存在则对此过程起明显抑制作用。

    Abstract:

    [Objective] This study aimed to investigate the reductive dissolution of scorodite by an indigenous As-resistant bacterium isolated from the Jianghan plain and the influences of nitrate and sulfate on the mobilization in this microbiological process.[Methods] We used the microbial enrichment technique to isolate a facultative anaerobic arsenate-reducing strain (A11), amplified the 16S rRNA and functional genes (arsenate-reductase gene, thiosulfate reductase gene and nitrate reductase genes) from the bacterial cells, and analyzed arsenate-, ferric iron-, thiosulfate-, and nitrate-reducing activities of this strain. We also examined the abilities of A11 cells to catalyze the mobilization and release of As and Fe from scorodite under anaerobic conditions, and further explored how sulfate and nitrate affected this microbial process. The microbial reduction and dissolution of the scorodite mineral were verified by XRD and SEM-EDS analysis. [Results] Citrobacter sp. A11 completely reduced 0.45 mmol/L As(V), 2 mmol/L S2O32-, 1 mmol/L Fe(III) and 140 mg/L NO3- in 4 days, 6 days, 3 days, 28 hours, respectively. In the presence of A11 cells, approximately 33.68 μmol/L As(III) and 51.93 μmol/L Fe(II) were released from the scorodite slurries after 28 days of anaerobic incubations. The presence of sulfate caused 41.04% and 34.30% increases of the A11-catalyzed release of As(III) and Fe(II) over the course of 28 days. However, the addition of nitrate caused 35.07%, 53.46% decreases of the A11-catalyzed release of As(III) and Fe(II), respectively. XRD and SEM-EDS observations for the reduced scorodite revealed that the mineral particles were altered dramatically. The particles size of the treated scorodite was much smaller than the control one. [Conclusion] Citrobacter sp. A11 strain has been identified with the ability of arsenate, thiosulfate, ferric iron and nitrate reduction, also can efficiently catalyze the mobilization and release of As and Fe from scorodite under anaerobic conditions, and this process enhanced when sulfate was added to the reactions. However, this process was inhibited when nitrate was added.

    参考文献
    [1] Guo HM, Wen DG, Liu ZY, Jia YF, Guo Q. A review of high arsenic groundwater in Mainland and Taiwan, China:distribution, characteristics and geochemical processes. Applied Geochemistry, 2014, 41:196-217.
    [2] Lièvremont D, Bertin PN, Lett MC. Arsenic in contaminated waters:biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie, 2009, 91(10):1229-1237.
    [3] Li G, Sun GX, Williams PN, Nunes L, Zhu YG. Inorganic arsenic in Chinese food and its cancer risk. Environment International, 2011, 37(7):1219-1225.
    [4] Wu Y, Zhou XY, Lei M, Yang J, Ma J, Qiao PW, Chen TB. Migration and transformation of arsenic:contamination control and remediation in realgar mining areas. Applied Geochemistry, 2017, 77:44-51.
    [5] Biswas A, Majumder S, Neidhardt H, Halder D, Bhowmick S, Mukherjee-Goswami A, Kundu A, Saha D, Berner Z, Chatterjee D. Groundwater chemistry and redox processes:depth dependent arsenic release mechanism. Applied Geochemistry, 2011, 26(4):516-525.
    [6] DeLemos JL, Bostick BC, Renshaw CE, Stürup S, Feng XH. Landfill-stimulated iron reduction and arsenic release at the coakley superfund site (NH). Environmental Science & Technology, 2006, 40(1):67-73.
    [7] Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Debashis C, Lloyd JR. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 2004, 430(6995):68-71.
    [8] Mumford AC, Barringer JL, Benzel WM, Reilly PA, Young LY. Microbial transformations of arsenic:mobilization from glauconitic sediments to water. Water Research, 2012, 46(9):2859-2868.
    [9] Oremland RS, Stolz JF. Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 2005, 13(2):45-49.
    [10] Yamamura S, Amachi S. Microbiology of inorganic arsenic:from metabolism to bioremediation. Journal of Bioscience and Bioengineering, 2014, 118(1):1-9.
    [11] Zobrist J, Dowdle PR, Davis JA, Oremland RS. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science & Technology, 2000, 34(22):4747-4753.
    [12] Huang JH, Voegelin A, Pombo SA, Lazzaro A, Zeyer J, Kretzschmar R. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by shewanella putrefaciens strain CN-32. Environmental Science & Technology, 2011, 45(18):7701-7709.
    [13] Smeaton CM, Walshe GE, Smith AML, Hudson-Edwards KA, Dubbin WE, Wright K, Beale AM, Fryer BJ, Weisener CG. Simultaneous release of Fe and As during the reductive dissolution of Pb-As jarosite by shewanella putrefaciens CN32. Environmental Science & Technology, 2012, 46(23):12823-12831.
    [14] Tufano KJ, Reyes C, Saltikov CW, Fendorf S. Reductive processes controlling arsenic retention:revealing the relative importance of iron and arsenic reduction. Environmental Science & Technology, 2008, 42(22):8283-8289.
    [15] Cai XL, Zhang ZN, Yin NY, Du HL, Li ZJ, Cui YS. Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China. Chemosphere, 2016, 161:200-207.
    [16] Qiao JT, Li XM, Li FB, Liu TX, Young LY, Huang WL, Sun K, Tong H, Hu M. Humic substances facilitate arsenic reduction and release in flooded paddy soil. Environmental Science & Technology, 2019, 53(9):5034-5042.
    [17] Kulkarni HV, Mladenov N, McKnight DM, Zheng Y, Kirk MF, Nemergut DR. Dissolved fulvic acids from a high arsenic aquifer shuttle electrons to enhance microbial iron reduction. The Science of the Total Environment, 2018, 615:1390-1395.
    [18] Wang JN, Zeng XC, Zhu XB, Chen XM, Zeng X, Mu Y, Yang Y, Wang YX. Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater. Journal of Hazardous Materials, 2017, 339:409-417.
    [19] Yamamura S, Sudo T, Watanabe M, Tsuboi S, Soda S, Ike M, Amachi S. Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities. Journal of Hazardous Materials, 2018, 342:571-578.
    [20] Drewniak L, Styczek A, Majder-Lopatka M, Sklodowska A. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environmental Pollution, 2008, 156(3):1069-1074.
    [21] Jahromi FG, Ghahreman A. In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process. Journal of Hazardous Materials, 2018, 360:631-638.
    [22] Chen XM, Zeng XC, Wang JN, Deng YM, Ma T, E G, Mu Y, Yang Y, Li H, Wang YX. Microbial communities involved in arsenic mobilization and release from the deep sediments into groundwater in Jianghan plain, Central China. The Science of the Total Environment, 2017, 579:989-999.
    [23] Gan YQ, Wang YX, Duan YH, Deng YM, Guo XX, Ding XF. Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China. Journal of Geochemical Exploration, 2014, 138:81-93.
    [24] Zhou Y, Wang YX, Li YL, Zwahlen F, Boillat J. Hydrogeochemical characteristics of central Jianghan Plain, China. Environmental Earth Sciences, 2013, 68(3):765-778.
    [25] Duan YH, Gan YQ, Wang YX, Deng YM, Guo XX, Dong CJ. Temporal variation of groundwater level and arsenic concentration at Jianghan Plain, central China. Journal of Geochemical Exploration, 2015, 149:106-119.
    [26] Gao J, Zheng TL, Deng YM, Jiang HC. Indigenous iron-reducing bacteria and their impacts on arsenic release in arsenic-affected aquifer in Jianghan plain. Earth Science, 2017, 42(5):716-726. (in Chinese)高杰, 郑天亮, 邓娅敏, 蒋宏忱. 江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响. 地球科学, 2017, 42(5):716-726.
    [27] Li HM, Deng YM, Luo LW, Wang YX, Duan YH, Dong CJ, Gan YQ. Geochemistry of high arsenic shallow aquifers sediment of the Jianghan Plain. Geological Science and Technology Information, 2015, 34(3):178-184. (in Chinese)李红梅, 邓娅敏, 罗莉威, 王焰新, 段艳华, 董创举, 甘义群. 江汉平原高砷含水层沉积物地球化学特征. 地质科技情报, 2015, 34(3):178-184.
    [28] Guo HM, Liu ZY, Ding SS, Hao CB, Xiu W, Hou WG. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Environmental Pollution, 2015, 203:50-59.
    [29] Li S, Li XM, Li FB. Effect of Fe(II) on denitrification and associated functional microbial communities. China Environmental Science, 2018, 38(1):263-274. (in Chinese)李爽, 李晓敏, 李芳柏. Fe(II)对反硝化过程及其功能微生物群落的影响. 中国环境科学, 2018, 38(1):263-274.
    [30] Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. Journal of Bacteriology, 1995, 177(10):2813-2820.
    [31] Zhu XB, Zeng XC, Chen XM, Wu WW, Wang YX. Inhibitory effect of nitrate/nitrite on the microbial reductive dissolution of arsenic and iron from soils into pore water. Ecotoxicology, 2019, 28(5):528-538.
    [32] Fan JX, Wang YJ, Liu C, Wang LH, Yang K, Zhou DM, Li W, Sparks DL. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils:new insights from X-ray photoelectron and X-ray absorption spectroscopy. Journal of Hazardous Materials, 2014, 279:212-219.
    [33] Bennett WW, Teasdale PR, Panther JG, Welsh DT, Zhao HJ, Jolley DF. Investigating arsenic speciation and mobilization in sediments with DGT and DET:a mesocosm evaluation of oxic-anoxic transitions. Environmental Science & Technology, 2012, 46(7):3981-3989.
    [34] Zhu XY, Nordstrom DK, McCleskey RB, Wang RC, Lu XC, Li SL, Teng HH. On the thermodynamics and kinetics of scorodite dissolution. Geochimica et Cosmochimica Acta, 2019, 265:468-477.
    [35] 丁苏苏. 厌氧土著砷还原菌的特性及其对砷和铁迁移转化的影响. 中国地质大学(北京)硕士学位论文, 2016.
    [36] Qiao JT, Li XM, Hu M, Li FB, Young LY, Sun WM, Huang WL, Cui JH. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil. Environmental Science & Technology, 2018, 52(1):61-70.
    [37] Chen Z, Wang YP, Jiang XL, Fu D, Xia D, Wang HT, Dong GW, Li QB. Dual roles of AQDS as electron shuttles for microbes and dissolved organic matter involved in arsenic and iron mobilization in the arsenic-rich sediment. The Science of the Total Environment, 2017, 574:1684-1694.
    [38] Luo ZB, Hu SY, Chen DJ, Zhu B. From production to consumption:a coupled human-environmental nitrogen flow analysis in China. Environmental Science & Technology, 2018, 52(4):2025-2035.
    [39] Hao TW, Xiang PY, Mackey HR, Chi K, Lu H, Chui HK, van Loosdrecht MCM, Chen GH. A review of biological sulfate conversions in wastewater treatment. Water Research, 2014, 65:1-21.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

祝贤彬,刘紫薇,M. D. Uzzal Hossain,周行,曾宪春. 一株新的砷还原菌分离鉴定及其对天然矿物臭葱石的溶解作用[J]. 微生物学报, 2020, 60(6): 1206-1220

复制
分享
文章指标
  • 点击次数:488
  • 下载次数: 1525
  • HTML阅读次数: 1336
  • 引用次数: 0
历史
  • 收稿日期:2019-10-10
  • 最后修改日期:2020-01-22
  • 在线发布日期: 2020-06-10
文章二维码