大柳塔长焰煤中灰分和无机矿物对生物产气的影响
作者:
基金项目:

中央高校基本科研业务费专项资金(2017XKQY037);山西省晋煤集团煤与煤层气共采国家重点实验室开放基金(2018Kf12)


Effect of ash and inorganic minerals in Dalita long-flame coal on biogas production
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 以不同密度等级大柳塔长焰煤作为产气底物,前期驯化培养厌氧菌群进行生物模拟产气实验,研究不同密度等级煤中的灰分和无机矿物对生物产气的影响。[方法] 利用小浮沉将大柳塔长焰煤分成不同密度等级的煤样,采用工业分析、XRD、XRF分析小浮沉处理得到煤样的理化性质,利用这些煤样进行生物产气模拟实验,以甲烷产量作为评价指标,分析不同密度等级煤样中灰分对产气的影响。最后,通过添加几种标准矿物方式比较了煤中无机矿物对生物产气的可能影响。[结果] 不同密度等级煤样中灰分对产气量存在一般显著影响(P=0.035),且灰分与甲烷含量呈负相关关系,其灰分中的无机矿物如高岭土、菱铁矿、氧化亚铁镁等的积累对产气有抑制作用。不同矿物配比产气实验证实低含量的粘土矿物促进甲烷的生成,高含量的粘土矿物抑制产气。[结论] 不同密度等级煤中的灰分对生物产气存在一般显著的影响,高灰分煤的产气量低,而低灰分煤的产气量高。

    Abstract:

    [Objective] This study focuses on investigating the effects of ash content and minerals in long-flame coal from Daliuta with different density biogas production by simulated gas production experiments with enriched cultures of anaerobic bacteria and archaea. [Methods] Daliuta long-flame coal was separated into different fractions by density with small floating sedimentation. The physiochemical properties of the coal fractions, including proximate analysis, XRD, and XRF were analyzed. These coal fractions were used to conduct biogas production experiments. The methane yield was used as an indicator to evaluate the effect of ash content on gas production in different coal fractions. The effect of minerals in coal was also investigated by amendments of commercial-grade minerals. [Results] It appears that the effects of ash content in coal on gas production is significant (P=0.035). i.e., ash content is negatively correlated to the methane yield. Moreover, minerals such as kaolin, siderite, and ferrous magnesium oxide in the ash could suppress gas production. Experiments with different mineral ratios confirmed that gas production was prominent with low content of clay minerals and restricted with high content of clay minerals. [Conclusion] The ash content of coals of different density generally has a significant effect on biogas production. The methane yield was low for high-ash coal and high for low-ash coal.

    参考文献
    [1] Fu XL, Dai JS, Feng JW. Prediction of tectonic fractures in coal reservoirs using geomechanical method. Geosciences Journa, 2018, 22(4):589-608.
    [2] Yang XQ, Chen YM, Wu RW, Nie ZQ, Han ZY, Tan KL, Chen LY. Potential of biogenic methane for pilot-scale fermentation ex situ with lump anthracite and the changes of methanogenic consortia. Journal of Industrial Microbiology & Biotechnology, 2018, 45(4):229-237.
    [3] Wang BY, Tai C, Wu L, Chen LY, Liu JM, Hu B, Song DY. Methane production from lignite through the combined effects of exogenous aerobic and anaerobic microflora. International Journal of Coal Geology, 2017, 173:84-93.
    [4] Haq SR, Tamamura S, Ueno A, Tamazawa S, Aramaki N, Murakami T, Alam AKMB, Igarashi T, Kaneko K. Biogenic methane generation using solutions from column reactions of lignite with hydrogen peroxide. International Journal of Coal Geology, 2018, 197:66-73.
    [5] Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B, Turich C, Ashby M. Biogeochemistry of microbial coal-bed methane. Annual Review of Earth and Planetary Sciences, 2011, 39(1):617-656.
    [6] Robbins SJ, Evans PN, Esterle JS, Golding SD, Tyson GW. The effect of coal rank on biogenic methane potential and microbial composition. International Journal of Coal Geology, 2016, 154-155:205-212.
    [7] Fallgren PH, Jin S, Zeng CP, Ren ZY, Lu AH, Colberg PJS. Comparison of coal rank for enhanced biogenic natural gas production. International Journal of Coal Geology, 2013, 115:92-96.
    [8] Guo HG, Wang F, Li ZG. Advances in technology of microbial production of coalbed methane. Microbiology China, 2015, 42(3):584-590. (in Chinese)郭红光, 王飞, 李治刚. 微生物增产煤层气技术研究进展. 微生物学通报, 2015, 42(3):584-590.
    [9] Zhang J, Anderson K, Britt D, Liang YN. Sustaining biogenic methane release from Illinois coal in a fermenter for one year. Fuel, 2018, 227:27-34.
    [10] Zhang JL, Guo HG, Han Q, Li YP, Wang K. Research progress on the principles of biogenic coalbed methane generation and its influencing factors. Mineral Resources, 2018(6):1-6. (in Chinese)张金龙, 郭红光, 韩青, 李亚平, 王凯. 生物成因煤层气产生原理及其影响因素的研究进展. 矿产综合利用, 2018(6):1-6.
    [11] Su XB, Zhao WZ, Xia DP. The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam. Biotechnology for Biofuels, 2018, 11(1):Article number:245.
    [12] Ünal B, Perry VR, Sheth M, Gomez-Alvarez V, Chin K, Nüsslein K. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water. Frontiers in Microbiology, 2012, 3. Article number:175.
    [13] Song JX, Guo HY, Chen SL, Xia DP, Wang SS, Su XB. Control effect of micro-components in coal on biomethane metabolism. Natural Gas Industry, 2016, 36(5):25-30. (in Chinese)宋金星, 郭红玉, 陈山来, 夏大平, 王三帅, 苏现波. 煤中显微组分对生物甲烷代谢的控制效应. 天然气工业, 2016, 36(5):25-30.
    [14] Wu YY, Qin Y. Catalysis of mineral/metal elements in coal during gas generation. Advances in Earth Science, 2009, 24(8):882-890(in Chinese). 吴艳艳, 秦勇. 煤中矿物/金属元素在生气过程中的催化作用. 地球科学进展, 2009, 24(8):882-890.
    [15] Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environmental Science & Technology, 2014, 48(13):7536-7543.
    [16] Jimenez J, Theuerl S, Bergmann I, Klocke M, Guerra G, Romero-Romero O. Prokaryote community dynamics in anaerobic co-digestion of swine manure, rice straw and industrial clay residuals. Water Science and Technology, 2016, 74(4):824-835.
    [17] Liang YG, Xu L, Bao J, Firmin KA, Zong WM. Attapulgite enhances methane production from anaerobic digestion of pig slurry by changing enzyme activities and microbial community. Renewable Energy, 2020, 145:222-232.
    [18] Wang X, Wang DH, Ma L. Effect of bentonite addition on anaerobic digestion of kitchen waste. Journal of Agro-Environment Science, 2007(1):330-334. (in Chinese)王星, 王德汉, 马磊. 膨润土的添加用量对餐厨垃圾厌氧消化过程的影响. 农业环境科学学报, 2007(1):330-334.
    [19] Yang LL, Yue ZB, Chen TH, Wang J. Effect of goethite on anaerobic fermentation of organic components in municipal solid waste. Environmental Science, 2014, 35(5):1988-1993. (in Chinese)杨露露, 岳正波, 陈天虎, 王进. 针铁矿对城市生活垃圾有机组分厌氧发酵的影响. 环境科学, 2014, 35(5):1988-1993.
    [20] Zhong C, Wang J, Xu C, Huang F, Chen Q, Chen TH, Yue ZB. Effect of goethite addition on anaerobic methanogenesis of sodium propionate. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(5):961-965. (in Chinese)钟成, 王进, 徐诚, 黄纷, 陈琪, 陈天虎, 岳正波. 针铁矿添加量对丙酸钠厌氧产甲烷的影响. 矿物岩石地球化学通报, 2019, 38(5):961-965.
    [21] 邵培. 中低煤级煤有机地球化学特征及其对生物气生成的影响[D]. 中国矿业大学硕士学位论文, 2016.
    [22] 王爱宽. 褐煤本源菌生气特征及其作用机理[D]. 中国矿业大学博士学位论文, 2010.
    [23] Lu Y. Application of natural Gamma logging curve in coalfield logging. Henan Science and Technology, 2018, 10:80-81. (in Chinese)陆勇. 自然伽马测井曲线在煤田测井中的应用. 河南科技, 2018, 10:80-81.
    [24] Chen F, He H, Zhao SM, Yao JH, Sun Q, Huang GH, Xiao D, Tang LF, Leng YW, Tao XX. Analysis of microbial community succession during methane production from baiyinhua lignite. Energy & Fuels, 2018, 32(10):10311-10320.
    [25] Zhan D, He H, Liao YS, Zhao SM, Yao JH, Xiao D, Tang J, Tao XX. Community analysis and condition optimization of lignite-enhanced methanogens. Acta Microbiologica Sinica, 2018, 58(4):684-698. (in Chinese)占迪, 何环, 廖远松, 赵尚明, 姚菁华, 肖栋, 唐俊, 陶秀祥. 褐煤强化产甲烷菌群的群落分析及条件优化. 微生物学报, 2018, 58(4):684-698.
    [26] Kang YG, Yan W, Xiao JW, Zhang XQ, Wang XY, Wang YX. Research on coal quality of dalianhe formation in Yilan Coal Mine in Yilan Coalfield. Coal Technology, 2019, 38(3):65-67. (in Chinese)康玉国,闫伟,肖建伟,张晓晴,王晓永,王艳霞. 依兰煤田依兰煤矿达连河组煤质特征研究. 煤炭技术, 2019, 38(3):65-67.
    [27] Finkelman RB, Palmer CA, Wang P. Quantification of the modes of occurrence of 42 elements in coal. International Journal of Coal Geology, 2018, 185:138-160.
    [28] Finkelman RB, Dai SF, French D. The importance of minerals in coal as the hosts of chemical elements:a review. International Journal of Coal Geology, 2019, 212:103251.
    [29] Wen JH, Xue J, Zhang L, Xu CC, Wang D, Liu YM. Analysis of the relationship between wettability of long-flame coal and its ash content based on XRD. Coal Science and Technology, 2015, 43(11):83-86. (in Chinese)文金浩, 薛娇, 张磊, 徐翠翠, 王丹, 刘运敏. 基于XRD分析长焰煤润湿性与其灰分的关系. 煤炭科学技术, 2015, 43(11):83-86.
    [30] Liu D, Dong HL, Agrawal A, Singh R, Zhang J, Wang HM. Inhibitory effect of clay mineral on methanogenesis by Methanosarcina mazei and Methanothermobacter thermautotrophicus. Applied Clay Science, 2016, 126:25-32.
    [31] Zhang LS, Keller J, Yuan ZG. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Research, 2009, 43(17):4123-4132.
    [32] Wang AK, Qin Y, Lan FJ. Lignite biogas generation process and possible approaches based on origin bacteria. Geological Journal of China Universities, 2012, 18(3):485-489. (in Chinese) 王爱宽, 秦勇, 兰凤娟. 基于本源菌的褐煤生物气生成过程与可能途径. 高校地质学报, 2012, 18(3):485-489.
    [33] Zhao N, Han ZY. Experimental study on microbial degradation of lignite gas. Coal Conversion, 2019, 42(3):49-54. (in Chinese)赵娜, 韩作颖. 微生物降解褐煤产气实验研究. 煤炭转化, 2019, 42(3):49-54.
    [34] Chen LY, Wang BY, Tai C, Guan JD, Zhao H, Wang ML, Han ZY. Composition and transformation of intermediate metabolites of anthracite microbial gas formation. Journal of China Coal Society, 2016, 41(9):2305-2311. (in Chinese)陈林勇, 王保玉, 邰超, 关嘉栋, 赵晗, 王美林, 韩作颖. 无烟煤微生物成气中间代谢产物组成及其转化. 煤炭学报, 2016, 41(9):2305-2311.
    [35] Tao MX, Wang WC, Li ZP, Ma YZ, Li J, Li XB. Comprehensive study on formation path and parent material of secondary biogas in coal seams. Chinese Science Bulletin, 2014, 59(11):970-978. (in Chinese)陶明信, 王万春, 李中平, 马玉贞, 李晶, 李晓斌. 煤层中次生生物气的形成途径与母质综合研究. 科学通报, 2014, 59(11):970-978.
    [36] Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process:a review. Bioresource Technology, 2008, 99(10):4044-4064.
    [37] Auffan M, Achouak W, Rose J, Roncato M, Chanéac C, Waite D T, Masion A, Woicik JC, Wiesner MR, Bottero J, Brookhaven National Lab. Bnl UNUS. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental Science & Technology, 2008, 42(17):6730-6735.
    [38] Martins G, Salvador AF, Pereira L, Madalena Alves M. Methane production and conductive materials:a critical review. Environmental Science & Technology, 2018, 52(18):10241-10253.
    [39] Romero-Güiza M S, Vila J, Mata-Alvarez J, Chimenos J M, Astals S. The role of additives on anaerobic digestion:a review. Renewable and Sustainable Energy Reviews, 2016, 58:1486-1499.
    [40] Chen TH, Wang J, Zhou YF. Synthetic effect between iron oxide and sulfate mineral on the anaerobic transformation of organic substance. Bioresource Technology, 2014, 151:1-5.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张倩,何环,刘冬雪,孙强,黄华洲,占迪,黄再兴,陶秀祥. 大柳塔长焰煤中灰分和无机矿物对生物产气的影响[J]. 微生物学报, 2020, 60(6): 1232-1245

复制
分享
文章指标
  • 点击次数:452
  • 下载次数: 1223
  • HTML阅读次数: 2170
  • 引用次数: 0
历史
  • 收稿日期:2020-02-24
  • 最后修改日期:2020-04-17
  • 在线发布日期: 2020-06-10
文章二维码