III型干扰素相关生物学功能的研究进展
作者:
基金项目:

江苏现代农业(奶牛)产业技术体系(疾病防控创新团队)(JATS[2018]315);江苏高校优势学科建设工程;上海市科技兴农重点推广项目(沪农科推字2017第1-11号)


Update of the biological functions of type III interferon
Author:
  • Tianqi Hong

    Tianqi Hong

    College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, China;Important Disease Animal and Zoonosis Prevention and Control Collaborative Innovation Center of Jiangsu Province, Yangzhou 225009, Jiangsu Province, China;Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Jie Tao

    Jie Tao

    College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, China;Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Science, Shanghai 201106, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Yi Yang

    Yi Yang

    College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, China;Important Disease Animal and Zoonosis Prevention and Control Collaborative Innovation Center of Jiangsu Province, Yangzhou 225009, Jiangsu Province, China;Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Pengzhi Wang

    Pengzhi Wang

    College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, China;Important Disease Animal and Zoonosis Prevention and Control Collaborative Innovation Center of Jiangsu Province, Yangzhou 225009, Jiangsu Province, China;Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Guoqiang Zhu

    Guoqiang Zhu

    College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, China;Important Disease Animal and Zoonosis Prevention and Control Collaborative Innovation Center of Jiangsu Province, Yangzhou 225009, Jiangsu Province, China;Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [73]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    干扰素(Interferon,IFN)是一类具有多功能生物活性的糖蛋白,包含3个家族(I型、II型和III型)。III型干扰素(Type III interferon,IFN-III)是近16年发现的新型干扰素,其诱导过程及生物学功能与I型干扰素(Type I interferon,IFN-I)相似,在抗病毒、免疫调节、抗肿瘤、抑制自身免疫病、抑制过敏性哮喘以及抗细菌和真菌等方面具有重要作用。本文将从IFN-I和IFN-III的分类、序列同源性和信号传导等方面进行阐述,并结合近年来IFN-III在疾病治疗过程中所取得的成就,综述IFN-III的生物学功能,旨在为IFN-III的深入研究以及在多种疾病的诊断和防控中提供参考。

    Abstract:

    Interferon (IFN) is a kind of glycoprotein with multifunctional biological activity, and contains three families (type I, type II and type III). Type III interferon (IFN-III) is a novel interferon discovered in the last 16 years. The induction process and biological functions of IFN-III are similar to those of type I interferon (IFN-I). IFN-III plays an important role in antiviral, immunomodulatory, antitumor, suppression of autoimmune diseases, allergic asthma, as well as antibacterial and antifungal. We elaborate here IFN-I and IFN-III in terms of classification, sequence homology and signal transduction. Combining with the achievements of IFN-III in the treatment of diseases in recent years, we try to summarize the related biological functions of IFN-III, to provide a reference for further study of IFN-III.

    参考文献
    [1] Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proceedings of the Royal Society B:Biological Sciences, 1957, 147(927):258-267.
    [2] Sheppard P, Kindsvogel W, Xu WF, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C, Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ, Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Klucher KM. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nature Immunology, 2003, 4(1):63-68.
    [3] Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen ML, Shah NK, Langer JA, Sheikh F, Dickensheets H, Donnelly RP. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunology, 2003, 4(1):69-77.
    [4] Onabajo OO, Muchmore B, Prokunina-Olsson L. The IFN-λ4 conundrum:when a good interferon goes bad. Journal of Interferon & Cytokine Research, 2019, 39(10):636-641.
    [5] Wang WS, Xu L, Su JH, Peppelenbosch MP, Pan QW. Transcriptional regulation of antiviral interferon-stimulated genes. Trends in Microbiology, 2017, 25(7):573-584.
    [6] Lazear HM, Schoggins JW, Diamond MS. Shared and distinct functions of type I and type III interferons. Immunity, 2019, 50(4):907-923.
    [7] Alspach E, Lussier DM, Schreiber RD. Interferon γ and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harbor Perspectives in Biology, 2019, 11(3):a028480.
    [8] Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I, Chen S, Brand N, Tarway M, Liu LY, Sheikh F, Astemborski J, Bonkovsky HL, Edlin BR, Howell CD, Morgan TR, Thomas DL, Rehermann B, Donnelly RP, O'Brien TR. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nature Genetics, 2013, 45(2):164-171.
    [9] Lasfar A, Lewis-Antes A, Smirnov SV, Anantha S, Abushahba W, Tian B, Reuhl K, Dickensheets H, Sheikh F, Donnelly RP, Raveche E, Kotenko SV. Characterization of the mouse IFN-lambda ligand-receptor system:IFN-lambdas exhibit antitumor activity against B16 melanoma. Cancer Research, 2006, 66(8):4468-4477.
    [10] Sabat R. IL-10 family of cytokines. Cytokine & Growth Factor Reviews, 2010, 21(5):315-324.
    [11] Schreiber G. The molecular basis for differential type I interferon signaling. Journal of Biological Chemistry, 2017, 292(18):7285-7294.
    [12] Dumoutier L, Lejeune D, Hor S, Fickenscher H, Renauld JC. Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription (STAT)1, STAT2 and STAT3. Biochemical Journal, 2003, 370(2):391-396.
    [13] Pestka S, Krause CD, Sarkar D, Walter MR, Shi YF, Fisher PB. Interleukin-10 and related cytokines and receptors. Annual Review of Immunology, 2004, 22:929-979.
    [14] Galani IE, Koltsida O, Andreakos E. Type III interferons (IFNs):emerging master regulators of immunity//Schoenberger SP, Katsikis PD, Pulendran B. Crossroads Between Innate and Adaptive Immunity V. Cham:Springer, 2015:1-15.
    [15] Stanifer ML, Pervolaraki K, Boulant S. Differential regulation of type I and type III interferon signaling. International Journal of Molecular Sciences, 2019, 20(6):1445.
    [16] Broggi A, Tan YH, Granucci F, Zanoni I. IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function. Nature Immunology, 2017, 18(10):1084-1093.
    [17] Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, Boulant S, Gehrke L, Cossart P, Kagan JC. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nature Immunology, 2014, 15(8):717-726.
    [18] Zhang QZ, Ke HH, Blikslager A, Fujita T, Yoo D. Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling. Journal of Virology, 2018, 92(4):e01677-17.
    [19] Fox BA, Sheppard PO, O'Hara PJ. The role of genomic data in the discovery, annotation and evolutionary interpretation of the interferon-lambda family. PLoS One, 2009, 4(3):e4933.
    [20] O'Brien TR, Prokunina-Olsson L, Donnelly RP. IFN-λ4:the paradoxical new member of the interferon lambda family. Journal of Interferon & Cytokine Research, 2014, 34(11):829-838.
    [21] Yao QX, Fischer KP, Arnesen K, Tyrrell DL, Gutfreund KS. Molecular cloning, expression and characterization of Pekin duck interferon-λ. Gene, 2014, 548(1):29-38.
    [22] Mendoza JL, Schneider WM, Hoffmann HH, Vercauteren K, Jude KM, Xiong AM, Moraga I, Horton TM, Glenn JS, de Jong YP, Rice CM, Garcia KC. The IFN-λ-IFN-λR1-IL-10Rβ complex reveals structural features underlying type III IFN functional plasticity. Immunity, 2017, 46(3):379-392.
    [23] Wells AI, Coyne CB. Type III interferons in antiviral defenses at barrier surfaces. Trends in Immunology, 2018, 39(10):848-858.
    [24] Lazear HM, Nice TJ, Diamond MS. Interferon-λ:immune functions at barrier surfaces and beyond. Immunity, 2015, 43(1):15-28.
    [25] Mordstein M, Neugebauer E, Ditt V, Jessen B, Rieger T, Falcone V, Sorgeloos F, Ehl S, Mayer D, Kochs G, Schwemmle M, Gunther S, Drosten C, Michiels T, Staeheli P. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. Journal of Virology, 2010, 84(11):5670-5677.
    [26] Onoguchi K, Yoneyama M, Takemura A, Akira S, Taniguchi T, Namiki H, Fujita T. Viral infections activate types I and III interferon genes through a common mechanism. Journal of Biological Chemistry, 2007, 282(10):7576-7581.
    [27] Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathogens, 2008, 4(3):e1000017.
    [28] Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science, 2002, 296(5573):1653-1655.
    [29] Stark GR, Darnell JE Jr. The JAK-STAT pathway at twenty. Immunity, 2012, 36(4):503-514.
    [30] Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes:a complex web of host defenses. Annual Review of Immunology, 2014, 32:513-545.
    [31] Raftery N, Stevenson NJ. Advances in anti-viral immune defence:revealing the importance of the IFN JAK/STAT pathway. Cellular and Molecular Life Sciences, 2017, 74(14):2525-2535.
    [32] Jewell NA, Cline T, Mertz SE, Smirnov SV, Flaño E, Schindler C, Grieves JL, Durbin RK, Kotenko SV, Durbin JE. Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. Journal of Virology, 2010, 84(21):11515-11522.
    [33] Andreakos E, Zanoni I, Galani IE. Lambda interferons come to light:dual function cytokines mediating antiviral immunity and damage control. Current Opinion in Immunology, 2019, 56:67-75.
    [34] Good C, Wells AI, Coyne CB. Type III interferon signaling restricts enterovirus 71 infection of goblet cells. Science Advances, 2019, 5(3):eaau4255.
    [35] Baldridge MT, Lee S, Brown JJ, McAllister N, Urbanek K, Dermody TS, Nice TJ, Virgin HW. Expression of ifnlr1 on intestinal epithelial cells is critical to the antiviral effects of interferon lambda against norovirus and reovirus. Journal of Virology, 2017, 91(7):e02079-16.
    [36] Lin JD, Feng NG, Sen A, Balan M, Tseng HC, McElrath C, Smirnov SV, Peng JY, Yasukawa LL, Durbin RK, Durbin JE, Greenberg HB, Kotenko SV. Correction:distinct roles of type I and type Iii interferons in intestinal immunity to homologous and heterologous rotavirus infections. PLoS Pathogens, 2016, 12(6):e1005726.
    [37] Robek MD, Boyd BS, Chisari FV. Lambda interferon inhibits hepatitis B and C virus replication. Journal of Virology, 2005, 79(6):3851-3854.
    [38] Sorgeloos F, Kreit M, Hermant P, Lardinois C, Michiels T. Antiviral type I and type III interferon responses in the central nervous system. Viruses, 2013, 5(3):834-857.
    [39] Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC, Doyle SE, Gale M Jr, Klein RS, Diamond MS. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Science Translational Medicine, 2015, 7(284):284ra59.
    [40] Galani IE, Triantafyllia V, Eleminiadou EE, Koltsida O, Stavropoulos A, Manioudaki M, Thanos D, Doyle SE, Kotenko SV, Thanopoulou K, Andreakos E. Interferon-λ mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness. Immunity, 2017, 46(5):875-890.e6.
    [41] Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PAB, Bartlett NW, Kebadze T, Mallia P, Stanciu LA, Parker HL, Slater L, Lewis-Antes A, Kon OM, Holgate ST, Davies DE, Kotenko SV, Papi A, Johnston SL. Role of deficient type III interferon-λ production in asthma exacerbations. Nature Medicine, 2006, 12(9):1023-1026.
    [42] Pott J, Mahlakoiv T, Mordstein M, Duerr CU, Michiels T, Stockinger S, Staeheli P, Hornef MW. IFN-λ determines the intestinal epithelial antiviral host defense. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19):7944-7949.
    [43] Hernández PP, Mahlakõiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, Gronke K, Ryffel B, Hölscher C, Dumoutier L, Renauld JC, Suerbaum S, Staeheli P, Diefenbach A. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nature Immunology, 2015, 16(7):698-707.
    [44] Nice TJ, Baldridge MT, McCune BT, Norman JM, Lazear HM, Artyomov M, Diamond MS, Virgin HW. Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science, 2015, 347(6219):269-273.
    [45] Snell LM, McGaha TL, Brooks DG. Type I interferon in chronic virus infection and cancer. Trends in Immunology, 2017, 38(8):542-557.
    [46] O'Brien TR, Jackson SS. What have we learned from studies of IFN-λ variants and Hepatitis C Virus infection? Journal of Interferon & Cytokine Research, 2019, 39(10):618-626.
    [47] Muir AJ, Arora S, Everson G, Flisiak R, George J, Ghalib R, Gordon SC, Gray T, Greenbloom S, Hassanein T, Hillson J, Horga MA, Jacobson IM, Jeffers L, Kowdley KV, Lawitz E, Lueth S, Rodriguez-Torres M, Rustgi V, Shemanski L, Shiffman ML, Srinivasan S, Vargas HE, Vierling JM, Xu D, Lopez-Talavera JC, Zeuzem S. A randomized phase 2b study of peginterferon lambda-1a for the treatment of chronic HCV infection. Journal of Hepatology, 2014, 61(6):1238-1246.
    [48] Chan HLY, Ahn SH, Chang TT, Peng CY, Wong D, Coffin CS, Lim SG, Chen PJ, Janssen HLA, Marcellin P, Serfaty L, Zeuzem S, Cohen D, Critelli L, Xu D, Wind-Rotolo M, Cooney E. Peginterferon lambda for the treatment of HBeAg-positive chronic hepatitis B:a randomized phase 2b study (LIRA-B). Journal of Hepatology, 2016, 64(5):1011-1019.
    [49] Bayer A, Lennemann NJ, Ouyang YS, Bramley JC, Morosky S, De Azeved Marques ET Jr, Cherry S, Sadovsky Y, Coyne CB. Type III interferons produced by human placental trophoblasts confer protection against zika virus infection. Cell Host & Microbe, 2016, 19(5):705-712.
    [50] Corry J, Arora N, Good CA, Sadovsky Y, Coyne CB. Organotypic models of type III interferon-mediated protection from Zika virus infections at the maternal-fetal interface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35):9433-9438.
    [51] Srinivas S, Dai JH, Eskdale J, Gallagher GE, Megjugorac NJ, Gallagher G. Interferon-λ1(interleukin-29) preferentially down-regulates interleukin-13 over other T helper type 2 cytokine responses in vitro. Immunology, 2008, 125(4):492-502.
    [52] Koltsida O, Hausding M, Stavropoulos A, Koch S, Tzelepis G, Ubel C, Kotenko SV, Sideras P, Lehr HA, Tepe M, Klucher KM, Doyle SE, Neurath MF, Finotto S, Andreakos E. IL-28A (IFN-λ2) modulates lung DC function to promote Th1 immune skewing and suppress allergic airway disease. EMBO Molecular Medicine, 2011, 3(6):348-361.
    [53] Misumi I, Whitmire JK. IFN-λ exerts opposing effects on T cell responses depending on the chronicity of the virus infection. The Journal of Immunology, 2014, 192(8):3596-3606.
    [54] Blazek K, Eames HL, Weiss M, Byrne AJ, Perocheau D, Pease JE, Doyle S, McCann F, Williams RO, Udalova IA. IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production. Journal of Experimental Medicine, 2015, 212(6):845-853.
    [55] Zanoni I, Granucci F, Broggi A. Interferon (IFN)-λ Takes the Helm:immunomodulatory roles of type III IFNs. Frontiers in Immunology, 2017, 8:1661.
    [56] Yin ZW, Dai JH, Deng J, Sheikh F, Natalia M, Shih T, Lewis-Antes A, Amrute SB, Garrigues U, Doyle S, Donnelly RP, Kotenko SV, Fitzgerald-Bocarsly P. Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells. The Journal of Immunology, 2012, 189(6):2735-2745.
    [57] Borden EC. Interferons α and β in cancer:therapeutic opportunities from new insights. Nature Reviews Drug Discovery, 2019, 18(3):219-234.
    [58] Lasfar A, Gogas H, Zloza A, Kaufman HL, Kirkwood JM. IFN-λ cancer immunotherapy:new kid on the block. Immunotherapy, 2016, 8(8):877-888.
    [59] Numasaki M, Tagawa M, Iwata F, Suzuki T, Nakamura A, Okada M, Iwakura Y, Aiba S, Yamaya M. IL-28 elicits antitumor responses against murine fibrosarcoma. The Journal of Immunology, 2007, 178(8):5086-5098.
    [60] Lasfar A, Zloza A, Silk AW, Lee LY, Cohen-Solal KA. Interferon lambda:toward a dual role in cancer. Journal of Interferon & Cytokine Research, 2019, 39(1):22-29.
    [61] Lin SC, Kuo CC, Tsao JT, Lin LJ. Profiling the expression of interleukin (IL)-28 and IL-28 receptor α in systemic lupus erythematosus patients. European Journal of Clinical Investigation, 2012, 42(1):61-69.
    [62] Wu Q, Yang QR, Lourenco E, Sun HS, Zhang YC. Interferon-lambda1 induces peripheral blood mononuclear cell-derived chemokines secretion in patients with systemic lupus erythematosus:its correlation with disease activity. Arthritis Research & Therapy, 2011, 13(3):R88.
    [63] Wolk K, Witte K, Witte E, Raftery M, Kokolakis G, Philipp S, Schonrich G, Warszawska K, Kirsch S, Prosch S, Sterry W, Volk HD, Sabat R. IL-29 is produced by TH17 cells and mediates the cutaneous antiviral competence in psoriasis. Science Translational Medicine, 2013, 5(204):204ra129.
    [64] Umetsu DT, DeKruyff RH. The regulation of allergy and asthma. Immunological Reviews, 2006, 212(1):238-255.
    [65] Koch S, Finotto S. Role of interferon-λ in allergic asthma. Journal of Innate Immunity, 2015, 7(3):224-230.
    [66] Bierne H, Travier L, Mahlakõiv T, Tailleux L, Subtil A, Lebreton A, Paliwal A, Gicquel B, Staeheli P, Lecuit M, Cossart P. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. PLoS One, 2012, 7(6):e39080.
    [67] Odendall C, Voak AA, Kagan JC. Type III IFNs are commonly induced by bacteria-sensing TLRs and reinforce epithelial barriers during infection. The Journal of Immunology, 2017, 199(9):3270-3279.
    [68] Cohen TS, Prince AS. Bacterial pathogens activate a common inflammatory pathway through IFNλ regulation of PDCD4. PLoS Pathogens, 2013, 9(10):e1003682.
    [69] Espinosa V, Dutta O, McElrath C, Du PC, Chang YJ, Cicciarelli B, Pitler A, Whitehead I, Obar JJ, Durbin JE, Kotenko SV, Rivera A. Type III interferon is a critical regulator of innate antifungal immunity. Science Immunology, 2017, 2(16):eaan5357.
    [70] Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A, Mattei PJ, Regnault B, Nahori MA, Cabanes D, Gautreau A, Ait-Si-Ali S, Dessen A, Cossart P, Bierne H. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science, 2011, 331(6022):1319-1321.
    [71] Ferreira AR, Magalhaes AC, Camões F, Gouveia A, Vieira M, Kagan JC, Ribeiro D. Hepatitis C virus NS3-4A inhibits the peroxisomal MAVS-dependent antiviral signalling response. Journal of Cellular and Molecular Medicine, 2016, 20(4):750-757.
    [72] Cai BX, Bai QL, Chi XJ, Goraya MU, Wang L, Wang S, Chen B, Chen JL. Infection with classical swine fever virus induces expression of type III interferons and activates innate immune signaling. Frontiers in Microbiology, 2017, 8:2558.
    [73] Baumert TF, Berg T, Lim JK, Nelson DR. Status of direct-acting antiviral therapy for hepatitis C virus infection and remaining challenges. Gastroenterology, 2019, 156(2):431-445.
    相似文献
    引证文献
引用本文

洪天旗,陶洁,杨溢,王鹏志,朱国强. III型干扰素相关生物学功能的研究进展[J]. 微生物学报, 2020, 60(7): 1321-1334

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-24
  • 最后修改日期:2019-12-07
  • 在线发布日期: 2020-07-01
文章二维码