西方蜜蜂工蜂肠道菌群定殖起始点和定殖稳态点的结构比较分析
作者:
基金项目:

国家自然科学基金(31960286);云南省教育厅科学研究基金(2019J0050)


Comparison of intestinal flora structure between starting point and steady point of colonization in workers (Apis mellifera)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 目前,针对昆虫肠道细菌定殖规律的研究还未见报道。探索西方蜜蜂(Apis mellifera)肠道菌群定殖过程两个重要时间节点(起始0日龄和稳态7日龄)间肠道细菌群落(菌群)结构组成的差异,加深对蜜蜂及昆虫肠道菌群定殖规律的认识。[方法] 分别采集两个化蛹后工蜂发育阶段的个体各5只,分别解剖并提取其肠道菌群DNA。使用Illumina技术对肠道菌群16S rDNA高变区进行高通量测序。通过生物信息学的分析方法对肠道菌群进行多样性分析,并对两个时间点相对丰度最高的肠道菌群进行统计分析,比较肠道菌群相对丰度和组成的差异。[结果] 共获得515156条高质量序列,长度为227904953 bp,平均长度为442 bp。基于OTUs的分类表明,工蜂肠道细菌分别隶属于34个门82个纲221个目405个科799个属。此外,工蜂肠道菌群定殖起点和终点间的Alpha多样性指数存在显著差异(ACE,P=0.0014;Chao,P=0.0013;Shannon,P=0.0003;Simpson,P=0.0028,Student'st检验)。此外,相较0日龄工蜂,7日龄工蜂肠道中的乳酸杆菌LactobacillusGilliamella、双歧杆菌BifidobacteriumSnodgrassella 4个属的相对丰度显著增加;相反,不动杆菌Acinetobacter、大肠杆菌志贺氏菌Escherichia-Shigella、鞘脂单胞菌Sphingomonas、类杆菌Bacteroides、涅斯捷连科氏菌Nesterenkonia、栖热菌Thermus 6个属的细菌相对丰度显著降低(P<0.05)。[结论] 出房(0日龄)成年工蜂的肠道菌群多样性显著高于菌群定殖完成(7日龄)工蜂的肠道菌群多样性,且成年工蜂肠道菌群定殖完成前后部分类群的相对丰度显著改变。本研究的结果不仅可增加我们对蜜蜂肠道菌群定殖规律的认识,也能够为研究其他昆虫肠道菌群的定殖规律提供重要的参考信息。

    Abstract:

    [Objective] Now, there is no reports on colonization of intestinal bacteria in insects. Exploration for difference of intestinal bacterial structure and composition between two key time points (The starting point is 0-days and the steady point is 7-days after pupation) of intestinal bacterial colonization in Apis mellifera, deepening understanding of intestinal flora colonization in bees and even insects.[Methods] After pupation, five worker individuals were collected from each of the two time points. Samples of workers were dissected and then DNA of intestinal flora was extracted. High-throughput sequencing for the highly variable region of 16S rDNA of intestinal flora was implemented using illumine platform, and then diversity of intestinal flora was analyzed by bioinformatics. Intestinal flora showing the highest relative abundance at the two time points was statistically analyzed, as well as the relative abundance and composition of intestinal flora were compared. [Results] A total of 515156 quality sequences were obtained, with a total length of 227904953 bp and an average length of 442 bp. According to OTUs-based classification, intestinal bacteria of workers were classified into 34 phylum, 82 classes, 221 orders, 405 families and 799 genera, respectively. In addition, there was a significant difference between Alpha diversity index from the starting point and that from the end point of intestinal flora colonization in workers (ACE, P=0.0014; Chao, P=0.0013; Shannon, P=0.0003; Simpson, P=0.0028). It is found that the relative abundance of Lactobacillus, Gilliamella, Bifidobacterium and Snodgrassella increased significantly, and the relative abundance of Acinetobacter, escherichia-shigella, Sphingomonas, Bacteroides, Nesterenkonia and Thermus decreased significantly (P<0.05) in 7-days workers by comparing to 0-days workers. [Conclusion] Intestinal bacterial diversity of the newly emerged (0-day) adult A. mellifera was significantly higher than that of fully colonized (7-day) workers. The relative abundance of several intestinal bacteria in adult worker bees changed significantly after colonizing. Results of the study not only increase our understanding for colonization rules of intestinal bacteria in bee, and also provide important references for studying colonization rules of intestinal bacteria in other insects.

    参考文献
    [1] Yu YS, Zhang XW, Luo K. Key technology of Apis mellifare breeding. Practical Rural Technology, 2008, (1):44. (in Chinese)余玉生, 张学文, 罗坤. 西方蜜蜂养殖关键技术. 农村实用技术, 2008, (1):44.
    [2] West-Eberhard M. Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics, 1989, 20:249-278.
    [3] Stokstad E. The case of the empty hives. Science, 2007, 316(5827):970-972.
    [4] Becher MA, Osborne JL, Thorbek P, Kennedy PJ, Grimm V. REVIEW:towards a systems approach for understanding honeybee decline:a stocktaking and synthesis of existing models. Journal of Applied Ecology, 2013, 50(4):868-880.
    [5] Godfray HCJ, Blacquière T, Field LM, Hails RS, Petrokofsky G, Potts SG, Raine NE, Vanbergen AJ, Mclean AR. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B:Biological Sciences, 2014, 281(1786):20140558.
    [6] Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(3):979-984.
    [7] Lin LM, Xie F, Sun DM, Liu JH, Zhu WY, Mao SY. Ruminal microbiome-host crosstalk stimulates the development of the ruminal epithelium in a lamb model. Microbiome, 2019, 7(1):83.
    [8] Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489(7415):242-249.
    [9] Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota:role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 2017, 279(1):70-89.
    [10] Castellanos JG, Longman RS. Innate lymphoid cells link gut microbes with mucosal T cell immunity. Gut Microbes, 2020, 11(2):231-236.
    [11] Kwong WK, Moran NA. Cultivation and characterization of the gut symbionts of honey bees and bumble bees:description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(6):2008-2018.
    [12] Babendreier D, Joller D, Romeis J, Bigler F, Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiology Ecology, 2007, 59(3):600-610.
    [13] Bottacini F, Milani C, Turroni F, Sánchez B, Foroni E, Duranti S, Serafini F, Viappiani A, Strati F, Ferrarini A, Delledonne M, Henrissat B, Coutinho P, Fitzgerald GF, Margolles A, van Sinderen D, Ventura M. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One, 2012, 7(9):e44229.
    [14] Engel P, Kwong WK, Moran NA. Frischella perrara gen. nov., sp. nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(10):3646-3651.
    [15] Jeyaprakash A, Hoy MA, Allsopp MH. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta:Hymenoptera) assessed using 16S rRNA sequences. Journal of Invertebrate Pathology, 2003, 84(2):96-103.
    [16] Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. Composition of the early intestinal microbiota:knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes, 2012, 3(3):203-220.
    [17] Jones JC, Fruciano C, Hildebrand F, Al Toufalilia H, Balfour NJ, Bork P, Engel P, Ratnieks FLW, Hughes WO. Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and Evolution, 2018, 8(1):441-451.
    [18] Motta EVS, Raymann K, Moran NA. Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41):10305-10310.
    [19] Huang SK, Ye KT, Huang WF, Ying BH, Su X, Lin LH, Li JH, Chen YP, Li JL, Bao XL, Hu JZ. Influence of feeding type and Nosema ceranae infection on the gut microbiota of Apis cerana workers. mSystems, 2018, 3(6):e00177-18.
    [20] Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth-first 1000 days and beyond. Trends in Microbiology, 2019, 27(2):131-147.
    [21] Li XH, Zhou L, Yu YH, Ni JJ, Xu WJ, Yan QY. Composition of gut microbiota in the gibel carp (Carassius auratus gibelio) varies with host development. Microbial Ecology, 2017, 74(1):239-249.
    [22] Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJM. The composition of the zebrafish intestinal microbial community varies across development. The ISME Journal, 2016, 10(3):644-654.
    [23] Costa MC, Stämpfli HR, Allen-Vercoe E, Weese JS. Development of the faecal microbiota in foals. Equine Veterinary Journal, 2016, 48(6):681-688.
    [24] Zhang ZM, Li DP, Refaey MM, Xu WT, Tang R, Li L. Host Age affects the development of southern Catfish gut bacterial community divergent from that in the food and rearing water. Frontiers in Microbiology, 2018, 9:495.
    [25] Powell JE, Martinson VG, Urban-Mead K, Moran NA. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Applied and Environmental Microbiology, 2014, 80(23):7378-7387.
    [26] Anderson KE, Rodrigues PAP, Mott BM, Maes P, Corby-Harris V. Ecological succession in the honey bee gut:shift in Lactobacillus strain dominance during early adult development. Microbial Ecology, 2016, 71(4):1008-1019.
    [27] Wang LH, Wu J, Li K, Sadd BM, Guo YL, Zhuang DH, Zhang ZY, Chen Y, Evans JD, Guo J, Zhang ZG, Li JL. Dynamic changes of gut microbial communities of bumble bee queens through important life stages. mSystems, 2019, 4(6):e00631-19.
    [28] Li JL, Qin HR, Wu J, Sadd BM, Wang XH, Evans JD, Peng WJ, Chen YP. The prevalence of parasites and pathogens in Asian honeybees Apis cerana in China. PLoS One, 2012, 7(11):e47955.
    [29] Wang TZ, Wang ZL, Zhu HF, Wang ZY, Yu XP. Analysis of the gut microbial diversity of the brown planthopper, Nilaparvata lugens (Hemiptera:Delphacidae) by high-throughput sequencing. Acta Entomologica Sinica, 2019, 62(3):323-333. (in Chinese)王天召, 王正亮, 朱杭锋, 王紫晔, 俞晓平. 基于高通量测序的褐飞虱肠道微生物多样性分析. 昆虫学报, 2019, 62(3):323-333.
    [30] Martinson VG, Moy J, Moran NA. Establishment of characteristic gut bacteria during development of the honeybee worker. Applied and Environmental Microbiology, 2012, 78(8):2830-2840.
    [31] Wilkins LGE, Rogivue A, Fumagalli L, Wedekind C. Declining diversity of egg-associated bacteria during development of naturally spawned whitefish embryos (Coregonus spp.). Aquatic Sciences, 2015, 77(3):481-497.
    [32] Yan QY, Li JJ, Yu YH, Wang JJ, He ZL, Van Nostrand JD, Kempher ML, Wu LY, Wang YP, Liao LJ, Li XH, Wu S, Ni JJ, Wang C, Zhou JZ. Environmental filtering decreases with fish development for the assembly of gut microbiota. Environmental Microbiology, 2016, 18(12):4739-4754.
    [33] Yun JH, Jung MJ, Kim PS, Bae JW. Social status shapes the bacterial and fungal gut communities of the honey bee. Scientific Reports, 2018, 8(1):2019.
    [34] Crailsheim K. The flow of jelly within a honeybee colony. Journal of Comparative Physiology B, 1992, 162(8):681-689.
    [35] Crailsheim K. Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies. Journal of Comparative Physiology B, 1991, 161(1):55-60.
    [36] Seeley TD. Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology, 1982, 11(4):287-293.
    [37] Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY, Shin NR, Kim SH, Lee WJ, Bae JW. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology, 2014, 80(17):5254-5264.
    [38] Schloss PD, Delalibera I Jr, Handelsman J, Raffa KF. Bacteria Associated with the guts of two wood-boring beetles:Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environmental Entomology, 2006, 35(3):625-629.
    [39] Briones-Roblero CI, Rodríguez-Díaz R, Santiago-Cruz JA, Zúñiga G, Rivera-Orduña FN. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae:Scolytinae). Folia Microbiologica, 2016, 62(1):1-9.
    [40] Guo J, Wu J, Chen YP, Evans JD, Dai RG, Luo WH, Li JL. Characterization of gut bacteria at different developmental stages of Asian honey bees, Apis cerana. Journal of Invertebrate Pathology, 2015, 127:110-114.
    [41] Alberoni D, Baffoni L, Gaggìa F, Ryan PM, Murphy K, Ross PR, Stanton C, Di Gioia D. Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of Apis mellifera L. Beneficial Microbes, 2018, 9(2):269-278.
    [42] Kešnerová L, Mars RAT, Ellegaard KM, Troilo M, Sauer U, Engel P. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biology, 2017, 15(12):e2003467.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董志祥,李宏伟,郭军,林连兵,张棋麟. 西方蜜蜂工蜂肠道菌群定殖起始点和定殖稳态点的结构比较分析[J]. 微生物学报, 2020, 60(7): 1447-1457

复制
分享
文章指标
  • 点击次数:498
  • 下载次数: 1162
  • HTML阅读次数: 1455
  • 引用次数: 0
历史
  • 收稿日期:2019-10-09
  • 最后修改日期:2019-12-11
  • 在线发布日期: 2020-07-01
文章二维码