副溶血性弧菌耐热性直接溶血素(TDH)的研究进展
作者:
基金项目:

国家自然科学基金(31671779,31972188);国家重点研发计划(2018YFC1602205);上海市科技兴农项目(沪农科推字2017第4-4号);上海市教育委员会科研创新计划(2017-01-07-00-10-E00056)


Advances in research on thermostable direct hemolysin (TDH) of Vibrio parahaemolyticus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    副溶血性弧菌(Vibrio parahaemolyticus)是海产品中一种常见的食源性致病菌,常导致水产养殖动物患病或者引起食物中毒。耐热性直接溶血素(thermotolerant direct hemolysin,TDH)是副溶血性弧菌最为重要的致病因子之一。本文围绕tdh基因在弧菌属中的广泛分布与传播、tdh基因的多样性及其表达调控、TDH的蛋白结构及其生物活性进行了综述,并对未来TDH的研究方向进行了展望。旨在进一步了解由副溶血性弧菌感染所引起的病症,为预防副溶血性弧菌的感染和临床治疗提供理论支撑。

    Abstract:

    Vibrio parahaemolyticus is a widely distributed foodborne pathogen in seafood, often leading to diseases in aquaculture animals or food poisoning for human beings. Thermotolerant direct hemolysin (TDH) is one of the most important virulence factors of V. parahaemolyticus. This article systematically reviews the widespread distribution, spreading, the diversity and expression regulation of tdh gene, as well as the structure, biological activity and promising research directions of TDH protein. The article aims to deeply understand the symptoms caused by V. parahaemolyticus infection, and hence to provide theoretical support for the prevention and clinical treatment of V. parahaemolyticus infection.

    参考文献
    [1] Lopatek M, Wieczorek K, Osek J. Antimicrobial Resistance, Virulence Factors, and Genetic Profiles of Vibrio parahaemolyticus from Seafood. Applied and Environmental Microbiology, 2018, 84(16):e00537-18.
    [2] Mu LL, NIU B, Zhao Y. Advances in research on the role of Vibrio parahaemolyticus secretion system in pathogenicity. Acta Microbiologica Sinica, 2019, 59(4):37-47. (in Chinese) 穆丽丽, 牛犇, 赵勇. 副溶血性弧菌分泌系统在致病力中作用的研究进展. 微生物学报, 2019, 59(4):37-47.
    [3] Li Y, Zhang S, Li J, Chen ML, He M, Wang YY, Zhang YC, Jing HB, Ma HM, Li YD, Zhao L, Zhao HQ, Kan B, Pang B. Application of digital PCR and next generation sequencing in the etiology investigation of a foodborne disease outbreak caused by Vibrio parahaemolyticus. Food microbiology, 2019, 84:103233.
    [4] Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK, Qadri F, Martinez-Urtaza J. Vibrio spp. infections. Nature Reviews Disease Primers, 2018, 4:8.
    [5] 赵永刚. 副溶血弧菌tdh、trh和tlh基因的克隆、表达及基因敲除对其溶血活性的影响. 中国海洋大学博士学位论文, 2010.
    [6] Baba K, Shirai H, Terai A, Kumagai K, Takeda Y, Nishibuchi M. Similarity of the tdh gene-bearing plasmids of Vibrio cholerae non-O1 and Vibrio parahaemolyticus. Microb Pathog, 1991, 10(1):61-70.
    [7] Terai A, Shirai H, Yoshida O, Takeda Y, Nishibuchi M. Nucleotide sequence of the thermostable direct hemolysin gene (tdh gene) of Vibrio mimicus and its evolutionary relationship with the tdh genes of Vibrio parahaemolyticus. FEMS Microbiology Letters, 1990, 71(3):319-323.
    [8] Yamasaki S, Shirai H, Takeda Y, Nishibuchi M. Analysis of the gene of Vibrio hollisae encoding the hemolysin similar to the thermostable direct hemolysin of Vibrio parahaemolyticus. FEMS Microbiology Letters, 1991, 80(2/3):259-263.
    [9] Nishibuchi M, Kaper JB. Thermostable direct hemolysin gene of Vibrio parahaemolyticus:a virulence gene acquired by a marine bacterium. Infection and Immunity, 1995, 63(6):2093-2099.
    [10] Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T. Genome sequence of Vibrio parahaemolyticus:a pathogenic mechanism distinct from that of V. cholerae. The Lancet, 2003, 361(9359):743-749.
    [11] Groisman EA, Ochman H. Pathogenicity Islands:Bacterial Evolution in Quantum Leaps. Cell, 1996, 87(5):791-794.
    [12] Terai A, Baba K, Shirai H, Yoshida O, Takeda Y, Nishibuchi M. Evidence for insertion sequence-mediated spread of the thermostable direct hemolysin gene among Vibrio species. Journal of Bacteriology, 1991, 173(16):5036-5046.
    [13] Nishibuchi M, Kaper JB. Duplication and variation of the thermostable direct haemolysin (tdh) gene in Vibrio parahaemolyticus. Molecular Microbiology, 1990, 4(1):87-99.
    [14] Taniguchi H, Hirano H, Kubomura S, Higashi K, Mizuguchi Y. Comparison of the nucleotide sequences of the genes for the thermostable direct hemolysin and the thermolabile hemolysin from Vibrio parahaemolyticus. Microbial Pathogenesis, 1986, 1(5):425-432.
    [15] Yoh M, Honda T, Miwatani T, Nishibuchi M. Characterization of thermostable direct hemolysins encoded by four representative tdh genes of Vibrio parahaemolyticus. Microbial pathogenesis, 1991, 10(2):165-172
    [16] Okuda J, Nishibuchi M. Manifestation of the Kanagawa phenomenon, the virulence-associated phenotype, of Vibrio parahaemolyticus depends on a particular single base change in the promoter of the thermostable direct haemolysin gene. Molecular Microbiology, 1998, 30(3):499-511.
    [17] Baba K, Shirai H, Terai A, Nishibuchi M. Analysis of the tdh gene cloned from a tdh gene- and trh gene-positive strain of Vibrio parahaemolyticus. Microbiology and Immunology, 1991, 35(3):253-258.
    [18] Lin Z, Kumagai K, Baba K, Mekalanos JJ, Nishibuchi M. Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. Journal of Bacteriology, 1993, 175(12):3844-3855.
    [19] Miller VL, Mekalanos JJ. Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(11):3471-3475.
    [20] Miller VL, Taylor RK, Mekalanos JJ. Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell, 1987, 48(2):271-279.
    [21] Kodama T, Gotoh K, Hiyoshi H, Morita M, Izutsu K, Akeda Y, Park KS, Cantarelli VV, Dryselius R, Iida T, Honda T. Two regulators of Vibrio parahaemolyticus play important roles in enterotoxicity by controlling the expression of genes in the Vp-PAI region. PLoS ONE, 2010, 5(1):e8678.
    [22] Nakano M, Takahashi A, Su Z, Harada N, Mawatari K, Nakaya Y. Hfq regulates the expression of the thermostable direct hemolysin gene in Vibrio parahaemolyticus. BMC Microbiology, 2008, 8(1):155.
    [23] Zhang Y, Zhang Y, Gao H, Zhang L, Yin Z, Huang X, Zhou D, Yang H, Yang W, Wang L. Vibrio parahaemolyticus, CalR down regulates the thermostable direct hemolysin (TDH) gene transcription and thereby inhibits hemolytic activity. Gene, 2017, 613:39-44.
    [24] Osei-Adjei G, Gao H, Zhang Y, Zhang L, Yang W, Yang H, Yin Z, Huang X, Zhang Y, Zhou D. Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus. Oncotarget, 2017, 8(39):65809-65822.
    [25] Guo M, Fang Z, Sun L, Sun D, Wang Y, Li C, Wang R, Liu Y, Hu H, Liu Y, Xu D, Gooneratne R. Regulation of Thermostable direct hemolysin and biofilm formation of Vibrio parahaemolyticus by Quorum-Sensing genes luxM and luxS. Current Microbiology, 2018, 75(9):1190-1197.
    [26] Pace JL, Chai TJ, Rossi HA, Jiang X. Effect of bile on Vibrio parahaemolyticus. Applied and Environmental Microbiology, 1997, 63(6):2372-2377.
    [27] Gotoh K, Kodama T, Hiyoshi H, Izutsu K, Park KS, Dryselius R, Akeda Y, Honda T, Iida T. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS ONE, 2010, 5(10):e13365-.
    [28] Midgett CR, Almagro-Moreno S, Pellegrini M, Taylor RK, Skorupski K, Kull FJ. Bile salts and alkaline pH reciprocally modulate the interaction between the periplasmic domains of Vibrio cholerae ToxR and ToxS. Molecular Microbiology, 2017, 105(2):258-272.
    [29] Feng B, Guo Z, Zhang W, Pan Y, Zhao Y. Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus. BMC Microbiology, 2016, 16(1):75.
    [30] Mahoney JC, Gerding MJ, Jones SH, Whistler CA. Comparison of the pathogenic potentials of environmental and clinical Vibrio parahaemolyticus strains indicates a role for temperature regulation in virulence. Applied and Environmental Microbiology, 2010, 76(22):7459-7465.
    [31] Matsuda S, Okada R, Tandhavanant S, Hiyoshi H, Gotoh K, Iida T, Kodama T. Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem. Nature Microbiology, 2019, 4(5):781-788.
    [32] Yanagihara I, Nakahira K, Yamane T, Kaieda S, Mayanagi K, Hamada D, Fukui T, Ohnishi K, Kajiyama S, Shimizu T, Sato M, Ikegami T, Ikeguchi M, Honda T, Hashimoto H. Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. Journal of Biological Chemistry, 2010, 285(21):16267-16274.
    [33] Kundu N, Tichkule S, Pandit SB, Chattopadhyay K. Disulphide bond restrains the C-terminal region of thermostable direct hemolysin during folding to promote oligomerization. Biochemical Journal, 2017, 474(2):317-331.
    [34] Cai Q, Zhang Y. Structure, function and regulation of the thermostable direct hemolysin (TDH) in pandemic, Vibrio parahaemolyticus. Microbial Pathogenesis, 2018, 123:242-245.
    [35] Takeda Y, Takeda T, Honda T, Miwatani T. Inactivation of the biological activities of the thermostable direct hemolysin of Vibrio parahaemolyticus by ganglioside Gt1. Infection and Immunity, 1976, 14(1):1-5.
    [36] Lang PA, Kaiser S, Myssina S, Birka C, Weinstock C, Northoff H, Wieder T, Lang F, Huber SM. Effect of Vibrio parahaemolyticus haemolysin on human erythrocytes. Cellular Microbiology, 2004, 6(4):391-400.
    [37] Sakazaki R, Tamura K, Nakamura A, Kurata T, Goda A. Studies on enteropathogenic activity of Vibrio parahaemolyticus using ligated gut loop model in rabbits. Japanese Journal of Medical Science & Biology, 1974, 27(1):35-43.
    [38] Sakurai J, Honda T, Jinguji Y, Arita M, Miwatani T. Cytotoxic effect of the thermostable direct hemolysin produced by Vibrio parahaemolyticus on FL cells. Infection and Immunity, 1976, 13(3):876-883.
    [39] Honda T, Tekada Y, Miwatani T. Pathogenesis of Vibrio Parahaemolyticus. Natural Toxins, 1980:251-258.
    [40] Naim R, Yanagihara I, Iida T, Honda T. Vibrio parahaemolyticus thermostable direct hemolysin can induce an apoptotic cell death in Rat-1 cells from inside and ouside of the cells. FEMS Microbiology Letters, 2001, 195(2):237-244.
    [41] Matsuda S, Kodama T, Okada N, Okayama K, Honda T, Iida T. Association of Vibrio parahaemolyticus thermostable direct hemolysin with lipid rafts is essential for cytotoxicity but not hemolytic activity. Infection and Immunity, 2010, 78(2):603-610.
    [42] Tang GQ, Iida T, Yamamoto K, Honda T. Ca2+-independent cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin (TDH) on Intestine 407, a cell line derived from human embryonic intestine. FEMS Microbiology Letters, 1995, 134(2/3):233-238.
    [43] Chowdhury P, Pore D, Mahata N, Karmakar P, Pal A, Chakrabarti MK. Thermostable direct hemolysin downregulates human colon carcinoma cell proliferation with the involvement of E-cadherin, and β-catenin/Tcf-4 signaling. PLoS ONE, 2011, 6(5):e20098.
    [44] Huang SC, Wang YK, Huang WT, Kuo TM, Yip BS, Li TH, Wu TK. Potential antitumor therapeutic application of Grimontia hollisae thermostable direct hemolysin mutants. Cancer Science, 2015, 106(4):447-754.
    [45] Baffone W, Casaroli A, Campana R, Citterio B, Vittoria E, Pierfelici L, Donelli G. In vivo studies on the pathophysiological mechanism of Vibrio parahaemolyticus TDH+-induced secretion. Microbial Pathogenesis, 2005, 38(2/3):133-137.
    [46] Raimondi F, Kao JP, Fiorentini C, Fabbri A, Donelli G, Gasparini N, Rubino A, Fasano A. Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in in vitro systems. Infection and Immunity, 2000, 68(6):3180-3185.
    [47] Song XY, Ma YJ, Fu JJ, Zhao AJ, Guo ZR, Malakar PK, Pan YJ, Zhao Y. Effect of temperature on pathogenic and non-pathogenic Vibrio parahaemolyticus biofilm formation. Food Control, 2017, 73:485-591.
    [48] Raghunath P, Karunasagar I, Karunasagar I. Improved isolation and detection of pathogenic Vibrio parahaemolyticus from seafood using a new enrichment broth. International Journal of Food Microbiology, 2009, 129(2):200-203.
    [49] Raghunath, P. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Frontiers in Microbiology, 2015, 5:805.
    [50] Baliga P, Shekar M, Ahamed ST, Venugopal, MN. Antibiotic resistance pattern and its correlation to the presence of tdh gene and CRISPR-Cas system in Vibrio parahaemolyticus strains isolated from seafood. Indian Journal of Fisheries, 2019, 66(2):101-108.
    [51] Flynn A, Davis BJK, Atherly D, Olson G, Bowers JC, DePaola A, Curriero FC. Associations of Environmental Conditions and Vibrio parahaemolyticus Genetic Markers in Washington State Pacific Oysters. Frontiers in Microbiology, 2019, 10:2797.
    [52] Liu BX, Liu HQ, Pan YJ, Zhao Y. Comparison of the effects of environmental parameters on the growth variability of Vibrio parahaemolyticus coupled with strain sources and genotypes analyses. Frontiers in Microbiology, 2016, 7:994.
    [53] Zhao AJ, Fu JJ, Song XY, Sun XH, Pan YJ, Zhao Y. Analysis of biofilm formation on pathogenic and non-pathogenic Vibrio parahaemolyticus at different temperatures and contact materials. Journal of Food Science and Biotechnology, 2018, 37(1):7-14. (in Chinese) 赵爱静, 付娇娇, 宋雪迎, 孙晓红, 潘迎捷, 赵勇. 致病性与非致病性副溶血性弧菌在不同温度和接触材料表面生物被膜形成情况分析. 食品与生物技术学报, 2018, 37(1):7-14.
    [54] Li H, Tang R, Lou Y, Cui ZC, Chen WJ, Hong Q, Zhang ZH, Malakar PK, Pan YJ, Zhao Y. A comprehensive epidemiological research for clinical Vibrio parahaemolyticus in Shanghai. Frontiers in Microbiology, 2017, 8:1043.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

檀利军,王敬敬,石千黛,刘海泉,赵勇. 副溶血性弧菌耐热性直接溶血素(TDH)的研究进展[J]. 微生物学报, 2020, 60(8): 1563-1573

复制
分享
文章指标
  • 点击次数:921
  • 下载次数: 1469
  • HTML阅读次数: 3649
  • 引用次数: 0
历史
  • 收稿日期:2019-11-28
  • 最后修改日期:2020-04-03
  • 在线发布日期: 2020-08-06
文章二维码